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Neural Language Models

e Neural Network (NN) model trained to approximate the language modeling function

e Aprobabilistic language model (LM) defines the probability of a sentence s = [w , w
w ] as:
N
P(s) = | [ P(wilwi, ws, ..., w;_1)
1=1
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Neural Language Models

e Neural Network (NN) model trained to approximate the language modeling function

e Aprobabilistic language model (LM) defines the probability of a sentences=[w, w,, ...,
w ] as:
N
P(s) = | [ P(wilwy, wy, ..., wi_y)
1=1
e Bengioetal. (2003) proposed a model that assigns a distributed vector for each word and

then uses a NN architecture to predict the next word > Neural Probabilistic Language
Model



Transformer Models

e Nowadays, the Transformer architecture has become
the preferred solution for the development of
state-of-the-art NLMs

e Transformers (Vaswani et al., 2017) use only attention
and fully connected layers to create highly scalable
networks capturing distant patterns
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BERT (Devlin et al., 2019)

Encoder model (12/24 layers)

Trained to approximate the Masked
Language Modeling (MLM) function

The model can be fine-tuned in order to

solve several NLP tasks:
o  Sentiment analysis;
o Question answering;
o  Textual entailment;
o etc.
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Parameters Are All You Need
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Interpreting Neural
Language Models



Interpretability in NLP

“In the context of NLP, this question needs to be understood in light of earlier NLP
work. [...] In some of these systems, features are more easily understood by
humans. [...] In contrast, it is more difficult to understand what happens in an
end-to-end neural network model that takes input (say, word embeddings) and
generates an output.”

Belinkov and Glass, Analysis Methods in Neural Language Processing: A Survey (2019). In
Transactions of ACL, Volume 7, pages 49-72.
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Interpretability in NLP

“In the context of NLP, this question needs to be understood in light of earlier NLP
work. [...] In some of these systems, features are more easily understood by
humans. [...] In contrast, it is more difficult to understand what happens in an
end-to-end neural network model that takes input (say, word embeddings) and
generates an output.”

Belinkov and Glass, Analysis Methods in Neural Language Processing: A Survey (2019). In
Transactions of ACL, Volume 7, pages 49-72.

Research questions:

e What happensin an end-to-end neural network model when trained on a language modeling task?

e What kind of linguistic knowledge (i.e. features) is encoded within their representations?

e |sthere arelationship between the linguistic knowledge implicitly encoded and the ability to solve a
specific task?
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Interpretability in NLP

e The analysis of the inner workings of NLMs has become one of the most addressed line of
research in NLP

e Several methods have been implemented to obtain meaningful explanations and to understand
how these models are able to capture syntax- and semantic- sensitive phenomena



Interpretability in NLP

e The analysis of the inner workings of NLMs has become one of the most addressed line of
research in NLP

e Several methods have been implemented to obtain meaningful explanations and to understand
how these models are able to capture syntax- and semantic- sensitive phenomena

e Several approaches:
o  Probing tasks (e.g. Hewitt and Manning, 2019; Pimentel et al., 2020);
o Analysis of attention mechanisms (e.g. Clark et al., 2019);
o  Explainability via Integrated Gradients (e.g. Ramnath, 2020);
o  Definition of diagnostic tests (e.g. Goldberg, 2019);
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Probing Task Approach
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Findings:
e BERT encodes linguistic information in a hierarchical
manner (Tenney et al., 2019)

e BERT encodes information about the structure of a syntax
tree (Hewitt and Manning, 2019)

e  BERT contains relational knowledge competitive with
symbolic knowledge bases (Petroni et al., 2019)
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Profiling Neural Language Models

e The “linguistic profiling” methodology (van Halteren, 2004) assumes that wide
counts of linguistic features are particularly helpful in the resolution of several NLP

tasks, e.g.:

o  Text Profiling (e.g. text readability, textual genres)
o Author Profiling (e.g. author’s age and native language)



Profiling Neural Language Models

e The “linguistic profiling” methodology (van Halteren, 2004) assumes that wide
counts of linguistic features are particularly helpful in the resolution of several NLP
tasks, e.g.:

o  Text Profiling (e.g. text readability, textual genres)
o Author Profiling (e.g. author’s age and native language)

Research Question:

Could the informative power of these features also be helpful to understand the
behaviour of state-of-the-art NLMs?




Profiling-UD: a tool for Linguistic Profiling of Texts

e ProfilingUD (Brunato et al., 2020) is a
web-based application that performs
linguistic profiling of a text, or a large
collection of texts, for multiple languages

e Itallows the extraction of more than 130
features, spanning across different levels of
linguistic description

e Link: http://linguistic-profiling.italianlp.it/

Linguistic Feature

Raw Text Properties
Sentence Length
Word Length

Vocabulary Richness
Type/Token Ratio for words and lemmas

Morphosyntactic information
Distibution of UD and language—specific POS
Lexical density

Inflectional morphology
Inflectional morphology of lexical verbs and auxiliaries

Verbal Predicate Structure
Distribution of verbal heads and verbal roots
Verb arity and distribution of verbs by arity

Global and Local Parsed Tree Structures

Depth of the whole syntactic tree

Average length of dependency links and of the longest link
Average length of prepositional chains and distribution by depth
Clause length

Relative order of elements
Order of subject and object

Syntactic Relations
Distribution of dependency relations

Use of Subordination

Distribution of subordinate and principal clauses

Average length of subordination chains and distribution by depth
Relative order of subordinate clauses
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Profiling Neural Language Models
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Linguistic Profiling of a Neural Language Model (Miaschi et al., 2020)

e Weinvestigated the linguistic knowledge implicitly encoded by BERT

Research questions:

1. What kind of linguistic properties are encoded in a pre-trained version of BERT?
2. How this knowledge is modified after a fine-tuning process

3.  Whether this implicit knowledge affects the ability of the model to solve a specific downstream
task



Linguistic Profiling of a Neural Language Model (Miaschi et al., 2020)
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Linguistic Profiling of a Neural Language Model (Miaschi et al., 2020)

e Fine-tuning of BERT on the Native Language Identification (NLI)

“No breakfast, coz you still have enough alcohol in your stomach.”
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Linguistic Profiling of a Neural Language Model (Miaschi et al., 2020)

e Fine-tuning of BERT on the Native Language Identification (NLI)

“No breakfast, coz you still have enough alcohol in your stomach.”

e Probing tasks on the fine-tuned models (x10)



Linguistic Profiling of a Neural Language Model (Miaschi et al., 2020)
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Linguistic Profiling of a Neural Language Model (Miaschi et al., 2020)

e We have split each NLI dataset in sentences correctly and incorrectly classified by
BERT
e We computed the MSE for each subset and each probing feature



Linguistic Profiling of a Neural Language Model (Miaschi et al., 2020)

e We have split each NLI dataset in sentences correctly and incorrectly classified by

BERT
e We computed the MSE for each subset and each probing feature
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Probing Linguistic Knowledge in Italian Neural Language Models

e How about Italian Transformers?

e In “Probing Linguistic Knowledge in Italian Neural Language Models across
Language Varieties” (Miaschi et al. 2020), we applied our profiling approach on 7

different Transformer models available for the Italian language, in order to:
o Compare the performances of the 7 pre-trained NLMs;
o Investigate whether and how the knowledge encoded by these NLMs differs across textual genres
and language varieties.




How about Italian Transformers?

Name Training data

BERT Architecture
Multilingual-BERT Wikipedia
BERT-base-italian Wikipedia + OPUS (13GB)
AIBERTo TWITA (191GB)

RoBERTa Architecture

GilBERTo OSCAR (71GB)
UmBERTo-Commoncrawl OSCAR (69GB)
UmBERTo-Wikipedia Wikipedia (7GB)

GPT-2 Architecture

GePpeTto Wikipedia + tWAC (14GB)




How about Italian Transformers?

Short Name Types of texts # sent
ParTUT Multi-genre 2,090
VIT Multi-genre 10,087
ISDT Multi-genre 14,167
ISDT tanl Newswire 4,043
ISDT tut Legal /Newswire/Wiki 3,802
ISDT_quest Interrogative sentences 2,162
ISDT 2parole  Simplified Italian news 1,421
ISDT_europarl EU Parliament debates 497
PoSTWITA Tweets 6,713
TWITTIRO Ironic Tweets 1,424
Total 35,481




How about Italian Transformers?
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How about Italian Transformers?
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NLMs have reached astonishing performance in almost all NLP tasks
e However, thisimprovement comes at the cost of interpretability
Several methods have been implemented to understand the inner mechanisms

and decision-making processes of these models
o anditisanever-evolving and exciting area of research (e.g. Li et al., 2022, Bensemann et al., 2022)



Conclusion and Future Directions

NLMs have reached astonishing performance in almost all NLP tasks
e However, thisimprovement comes at the cost of interpretability
Several methods have been implemented to understand the inner mechanisms

and decision-making processes of these models
o anditisanever-evolving and exciting area of research (e.g. Li et al., 2022, Bensemann et al., 2022)

Future Directions:

e Study how the linguistic knowledge arise during the pre-training phase of a NLM and how it changes when
dealing with different training objectives

e Improve the robustness of NLMs by e.g. selecting input data appropriately during the pre-training phase
and thus strengthening their implicit linguistic competence

e ...Prompting for linguistic competence? (Liu et al., 2021)
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