Download
Abstract
An increasing number of pretrained Large Language Models (LLMs) are being released, though the majority are predominantly designed for English. While they can often handle other languages due to contamination or some degree of multilingual pretraining data, English-centric LLMs are not optimized for non-English languages. This leads to inefficient encoding (high token ‘fertility’) and slower inference times for those languages. In this work, we explore various vocabulary adaptation techniques to tailor English LLMs for the Italian language. We introduce Semantic Alignment Vocabulary Adaptation (SAVA), a novel method that learns neural mapping to accomplish vocabulary substitution, which achieve state-of-the-art performances on several downstream tasks. We adapted two LLMs: Mistral-7b-v0.1, reducing token fertility by 25%, and Llama-3.1-8b, optimizing the vocabulary and reducing the number of parameters by 1 billion. We show that, after the adaptation of the vocabulary, these models can recover their performances with a relatively limited stage of continual training on the target language. Finally, we test the adapted models’ capabilities on several multi-choice and generative tasks.
Citation
@inproceedings{moroni-etal-2025-optimizing,
title = "Optimizing {LLM}s for {I}talian: Reducing Token Fertility and Enhancing Efficiency Through Vocabulary Adaptation",
author = "Moroni, Luca and
Puccetti, Giovanni and
Huguet Cabot, Pere-Llu{\'i}s and
Bejgu, Andrei Stefan and
Miaschi, Alessio and
Barba, Edoardo and
Dell{'}Orletta, Felice and
Esuli, Andrea and
Navigli, Roberto",
editor = "Chiruzzo, Luis and
Ritter, Alan and
Wang, Lu",
booktitle = "Findings of the Association for Computational Linguistics: NAACL 2025",
month = apr,
year = "2025",
address = "Albuquerque, New Mexico",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.findings-naacl.371/",
pages = "6646--6660",
ISBN = "979-8-89176-195-7",
abstract = "The number of pretrained Large Language Models (LLMs) is increasing steadily, though the majority are designed predominantly for the English language. While state-of-the-art LLMs can handle other languages, due to language contamination or some degree of multilingual pretraining data, they are not optimized for non-English languages, leading to inefficient encoding (high token {\textquotedblleft}fertility{\textquotedblright}) and slower inference speed.In this work, we thoroughly compare a variety of vocabulary adaptation techniques for optimizing English LLMs for the Italian language, and put forward Semantic Alignment Vocabulary Adaptation (SAVA), a novel method that leverages neural mapping for vocabulary substitution. SAVA achieves competitive performance across multiple downstream tasks, enhancing grounded alignment strategies. We adapt two LLMs: Mistral-7B-v0.1, reducing token fertility by 25{\%}, and Llama-3.1-8B, optimizing the vocabulary and reducing the number of parameters by 1 billion. We show that, following the adaptation of the vocabulary, these models can recover their performance with a relatively limited stage of continual training on the target language. Finally, we test the capabilities of the adapted models on various multi-choice and generative tasks."
}