Download
Abstract
We introduce MAIA (Multimodal AI Assessment), a native-Italian benchmark designed for fine-grained investigation of the reasoning abilities of visual language models on videos. MAIA differs from other available video benchmarks for its design, its reasoning categories, the metric it uses and the language and culture of the videos. It evaluates Vision Language Models (VLMs) on two aligned tasks: a visual statement verification task, and an open-ended visual question-answering task, both on the same set of video-related questions. It considers twelve reasoning categories that aim to disentangle language and vision relations by highlight when one of two alone encodes sufficient information to solve the tasks, when they are both needed and when the full richness of the short video is essential instead of just a part of it. Thanks to its carefully taught design, it evaluates VLMs’ consistency and visually grounded natural language comprehension and generation simultaneously through an aggregated metric. Last but not least, the video collection has been carefully selected to reflect the Italian culture and the language data are produced by native-speakers.
Citation
@inproceedings{testa-etal-2025-one,
title = "All-in-one: Understanding and Generation in Multimodal Reasoning with the {MAIA} Benchmark",
author = "Testa, Davide and
Bonetta, Giovanni and
Bernardi, Raffaella and
Bondielli, Alessandro and
Lenci, Alessandro and
Miaschi, Alessio and
Passaro, Lucia and
Magnini, Bernardo",
editor = "Christodoulopoulos, Christos and
Chakraborty, Tanmoy and
Rose, Carolyn and
Peng, Violet",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2025",
month = nov,
year = "2025",
address = "Suzhou, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.findings-emnlp.1091/",
pages = "20030--20050",
ISBN = "979-8-89176-335-7",
abstract = "We introduce MAIA (Multimodal AI Assessment), a native-Italian benchmark designed for fine-grained investigation of the reasoning abilities of visual language models on videos. MAIA differs from other available video benchmarks for its design, its reasoning categories, the metric it uses, and the language and culture of the videos. MAIA evaluates Vision Language Models (VLMs) on two aligned tasks: a visual statement verification task, and an open-ended visual question-answering task, both on the same set of video-related questions. It considers twelve reasoning categories that aim to disentangle language and vision relations by highlighting the role of the visual input. Thanks to its carefully taught design, it evaluates VLMs' consistency and visually grounded natural language comprehension and generation simultaneously through an aggregated metric revealing low results that highlight models' fragility. Last but not least, the video collection has been carefully selected to reflect the Italian culture, and the language data are produced by native-speakers.Data available at *[GitHub](https://github.com/Caput97/MAIA-Multimodal{\_}AI{\_}Assessment.git).*"
}