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Abstract

N the last few years, the analysis of the inner workings of state-of-the-art Neural
Language Models (NLMs) has become one of the most addressed line of research
in Natural Language Processing (NLP). Several techniques have been devised to

obtain meaningful explanations and to understand how these models are able to capture
semantic and linguistic knowledge. The goal of this thesis is to investigate whether
exploiting NLP methods for studying human linguistic competence and, specifically,
the process of written language evolution is it possible to understand the behaviour
of state-of-the-art Neural Language Models (NLMs). First, we present an NLP-based
stylometric approach for tracking the evolution of written language competence in L1
and L2 learners using a wide set of linguistically motivated features capturing stylistic
aspects of a text. Then, relying on the same set of linguistic features, we propose
different approaches aimed at investigating the linguistic knowledge implicitly learned
by NLMs. Finally, we propose a study in order to investigate the robustness of one of the
most prominent NLM, i.e. BERT, when dealing with different types of errors extracted
from authentic texts written by L1 Italian learners.
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CHAPTER

Introduction

1.1 Motivations

The field of Natural Language Processing (NLP) has seen an unprecedented progress in
the last years. Much of this progress is due to the replacement of traditional systems with
newer and more powerful algorithms based on machine learning (ML) and, more recently,
on deep learning (DL) techniques. In fact, state-of-the-art ML and DL models proved to
outperform earlier systems and humans in a number of tasks, bringing the advantage of
both better results and fast predictions. In the context of NLP, these techniques have been
employed in several application scenarios, such as sentiment analysis [Sun et al., 2019],
parsing [Wang et al., 2019] or machine translation [Bentivogli et al., 2016], and different
domains [Li et al., 2019, Chalkidis et al., 2020]. This improvement, however, comes at
the cost of interpretability, since complex neural models offer little transparency about
their inner workings and their abilities.

To some extent, the problem of analyzing and interpreting neural networks (NNs)
in NLP falls into the larger question of interpretability in machine learning, which has
been the subject of much debate in recent years. Despite divergent opinions, there is
a general agreement on the need for the implementation of principles for obtaining
"meaningful explanations of the logic involved" when automated decision-making
take place [Guidotti et al., 2018]. In fact, by relying on complex machine learning
models trained on massive datasets, one of the main risk is to create and use decision
systems that we do not really understand. This impacts not only ethics but also on
accountability [Kroll et al., 2016], on safety [Danks and London, 2017] and on industrial
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Figure 1.1: Source https://s3.amazonaws.com/aylien-main/misc/blog/images/
nlp-language-dependence—small.png. Classical vs. DL-based NLP pipeline.

liability [Kingston, 2016]. It is therefore no coincidence that these issues have attracted
the attention not only of the Artificial Intelligence (AI) research community but also of
legislators!. All these arguments naturally apply to machine learning applications in
NLP.

In the context of NLP this question needs to be understood in light of earlier work,
where features automatically extracted from text, such as morphological properties,
lexical classes, syntactic categories or semantic relations are used to make predictions
with the so-called "feature-engineered systems". In this scenario, one could observe
the importance assigned by statistical NLP models to such features in order to gain a
better understanding of the model. In contrast, it is more difficult to understand what
kind of linguistic knowledge is encoded in an end-to-end Neural Language Model
(NLM) [Belinkov and Glass, 2019]. Consider a text classification task (see Figure 1.1).
Differently from a classical NLP pipeline, a typical NN model would take as input
word (or sentence) vectors from the input text and apply non-linear transformation
over the vectors. This transformation process can be further repeated via recurrence
or recursion of the network, before reaching the final prediction. As a consequence of
this procedure, the model often lacks a good explanation of its computation and of the
linguistic competence implicitly acquired during the training process. This problem has

1n 2018, the European Parliament adopted the General Data Protection Regulation (GDPR), which contains, among the others,
clauses focused on automated decision-making. Link: https://eur-lex.europa.eu/eli/reqg/2016/679/03
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1.2. Objective and Contributions

become even more critical since the introduction of the latest state-of-the-art NLMs
which, given their large size in terms of model parameters and the huge amount of
textual data used for the training process, are getting more and more challenging to
inspect. Moreover, it should be noted that being able to obtain insights about the inner
workings of such models can provide important feedback for the future development of
more efficient and meaningful models.

For all these reasons, in the last few years the analysis of NN language models is
becoming more prevalent and several research questions are being raised. What happens
in an end-to-end neural network model when trained on a language modeling task?
What kind of linguistic knowledge is encoded within their representations? Is there a
relationship between the linguistic knowledge implicitly encoded and the ability to solve
a specific task? As a matter of fact, several survey papers summarising the main studies
focused on the analysis of such models have been published in the last two years only
(e.g. [Belinkov and Glass, 2019, Rogers et al., 2020]). This thesis falls within the context
of these studies and propose different approaches for understanding the inner behaviour
of NN models of language and, more specifically, recent state-of-the-art NLMs based on
the Transformer architecture [Vaswani et al., 2017].

1.2 Objective and Contributions

The main objective of this thesis is to deepen the study of the inner workings of recent
state-of-the-art NLMs. To this aim, we started with the following research question: can
we use NLP methods developed to study human linguistic competence and, specifically,
the process of written language evolution to interpret the linguistic knowledge encoded
by NLMs? Starting from this hypothesis, we decided to exploit several approaches
which focus on the study of the linguistic competence implicitly learned by these models
rather than addressing their internal structure. In this sense, our methodology is in line
with the studies that, as described by [Belinkov and Glass, 2019], seek to understand
"how linguistic concepts that were common as features in NLP systems are captured in
neural networks".
In the following we discuss the main contributions of the thesis.

1.2.1 An NLP approach for tracking the evolution of written language compe-
tence

We introduce an NLP-based stylometric approach for tracking the evolution of written
language competence in L1 and L2 learners. It should be noted that We refer to the
concept of "written language competence evolution" as the process of monitoring and
understanding the properties of L.1 and L2 learners language and how these properties
evolve over time. The approach is based on the core assumptions of computational
stylometry, i.e. formal properties of a text characterizing its style can reveal underlying
traits about the author [Daelemans, 2013]. From this perspective, we argue that a
ML model trained with a wide set of linguistically motivated features can provide
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important insights about the process of writing skills evolution. We experimentally
assess our approach on two longitudinal corpora containing essays written by Italian L1
and Spanish L2 learners respectively. The results show that our set of linguistic features
allows the model to automatically predict the relative order of two essays written by the
same student at different course levels. More importantly, we show that our approach
can be exploited to investigate the typologies of language phenomena (i.e. linguistic
features) that contribute more to the prediction task and how they change according to
different temporal spans.

1.2.2 Interpreting Neural Language Models Linguistic Abilities

We propose different methodologies aimed at investigating the inner workings of recent
NLMs, deriving a vast amount of hints about the linguistic knowledge encoded by
these models. More in detail, relying on the same set of linguistic features used in the
experiments devised for tracking the evolution of written language competence, we
design several experiments exploiting multiple interpretation techniques, ranging from
the definition of probing tasks to the analysis of the relationship between linguistic
competence and NLMs perplexity scores. The results show that Transformer-based
models are able to capture a wide range of linguistic phenomena, even without being
explicitly designed to learn such properties. Moreover, we show that the linguistic
knowledge stored in the internal representations of one of the most popular NLM
positively affects its ability to solve a classification task.

Focusing instead on the NLM sensitivity on authentic texts, we propose an extensive
analysis on the behaviour of a NLM when dealing with the learner errors derived from
the corpus of Italian L1 students. In particular, we provide a comprehensive investigation
of how non-standard linguistic forms are encoded in a pre-trained model by inspecting
its inner mechanisms from different perspectives with the aim of understanding, and
to what extend, internal representations diverge when the model is exposed to incor-
rect and correct forms. Moreover, we study the relationship between the presence of
certain typologies of linguistic errors in a sentence and the model ability to correctly
encode within its internal representations a set of linguistic properties characterising that
sentence.

1.3 Structure of the Thesis

The thesis is organized in 3 parts and 9 chapters, plus introduction and conclusions.

In part I we present related work. Specifically, in Chapter 2, we introduce the
background topics relevant for developing the thesis. In particular, we provide an
overview of the approaches developed in the last years for computing and learning
representations from texts relying on ML techniques. In Chapter 3, we present the
main studies and methodologies, based on data-driven and NLP approaches, to study
the process of language development and second language acquisition, both in spoken
and written language. In Chapter 4, we propose an overview of the works that aim
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to interpret and understand the inner workings of NLMs and, more specifically, the
linguistic concepts implicitly learned by these models.

Part I focuses on the studies devised for tracking the evolution of written language
competence. In Chapter 5, we present the approach and the experiments we designed in
order to monitor the evolution of written language competence in L1 learners, while in
Chapter 6 we discuss a complementary study in which we applied the same methodology
to L2 learners of Spanish. In Chapter 7 we draw the conclusion and give suggestions to
future research work direction.

In Part I1I we report the works we have conducted in order to understand the linguistic
proprieties encoded by state-of-the-art NLMs. Chapter 8 focuses on the experiments
we devised relying on the basis of the so-called probing classifiers paradigm. Chapter
9 discuss the analyses we did on the relationship between NLMs perplexity scores
and grammatical generalization abilities and on the performance of these models on
targeted diagnostic tests. Finally, in Chapter 10 we present an investigation aimed at
understanding the robustness and the sensitivity of a NLM against non-standard forms
emerging from the authentic texts we used for the experiments of Chapter 5.

In Chapter 11, we draw our conclusions, summarising the contributions and the
results obtained, and presenting possible future research directions.






Part I

Background






CHAPTER

Representation Learning in NLP: from Feature
Engineering to Neural Representation

In the last years, there has been an exponential growth in the number of machine
learning (ML) algorithms in the context of NLP applications. The success of these
learning algorithms relies on their capacity to understand a complex system such as
language and non-linear relationships within data. Nevertheless, finding the most
effective architectures and techniques for inferring textual representations from data
still represents a challenge in the NLP community. In this chapter, we provide an
overview of the state-of-the-art approaches developed for computing and learning textual
representations from texts. Specifically, in 2.1 we focus on the conventional machine
learning approaches that have been widely used until the early 2010s. In 2.2, instead,
we take a closer look at the latest approaches based on deep learning techniques, which
integrate feature engineering into the model fitting process by learning distributed
representations as non-linear combinations of weights in a Neural Network.

2.1 Conventional Machine Learning Approaches

Until the early 2010s, ML methods developed for NLP applications were primarily based
on the extraction of sample features by artificial methods [Li et al., 2020]. Therefore, the
effectiveness of these methods, often defined as conventional machine learning systems,
was largely due to the feature extraction process. More specifically, the typical workflow
of a conventional ML system built for a text classification problem can be divided in
four steps, as illustrated in Figure 2.1:
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Text Features Classifier / Evaluation
(Document, Preprocess Extraction Regressor (Accuracy, F-Score,
Sentence, etc.) (BoW, TF-IDF, etc.) (SVM, RF, etc.) )

Figure 2.1: Flowchart of a text classification task with a conventional ML system.

* The raw textual input for training the model is preprocessed (e.g. data cleaning,
tokenization, POS tagging, syntactic parsing, etc.);

* Preprocessed text is converted in text representations that can be used as input
features for the ML model. These representations are typically computed relying
on statistical features, such as Bag-of-Words (BOW) or n-grams, or on hand-crafted
features that can be extracted with specific NLP systems, e.g. types of words and
entities, semantic roles, parse trees, etc;

* The text represented according to the selected features is used as input of a classi-
fier/regressor model;

* Finally, the classification/regression model is evaluated according to the appropriate
metric (e.g. accuracy, F-score, etc).

Numerous models have been proposed, ranging from simple classification algorithms,
such as logistic regression (LR) and Naive Bayes Classifier (NBC), to tree-based clas-
sifiers [Xu et al., 2012] (e.g. Decision Tree and Random Forest) and Support Vector
Machine (SVM) models [Manevitz and Yousef, 2001]. Nevertheless, as mentioned
above, deciding the right features is a crucial aspect (if not the most important) of a
successful ML project and this is especially true for language data, which comes in the
form of a sequence of discrete symbols.

In the following subsections, we review the most common techniques to perform fea-
ture extraction on textual data. Specifically, in 2.1.1 we present some of the approaches
that rely on statistical methods, while in 2.1.2 we examine the methodologies developed
for inferring linguistic properties from lexical resources or automatically annotated texts.

2.1.1 Statistical Features

One of the most intuitive way to represent a word in order to be processed by a ML
system (i.e. an input vector) is relying on a one-hot word representation. Formally
speaking, given a vocabulary V' = wy, ws, ..., wy,| we can represent a word w with a
IVI-dimensional vector w, where each dimension of wis O or 1:

1 ifw=w;
w; = . (2.1)
0 otherwise.

In other words, one-hot word representations maps each word to an index of V. One
of the main drawbacks of this approach is that this type of representation cannot capture
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the relatedness among words: the difference between house and home is as much as the
difference between house and football.

Moving from word to sentence (or paragraph, document) representations, a simple
technique of representing such data as input features is to rely on the counts of the
characters or the words within the text. A very common feature extraction approach
based on this methodology is the bag-of-words approach (BOW). Roughly speaking,
the BOW approach is a representation that converts arbitrary text into fixed-length
vectors by simply counting how many times each word appears within the given text.
When using the BOW, it is possible to improve the feature vector computation by using
TF-IDF weighting [Luhn, 1957, Robertson and Jones, 1976]. Although very simple,
BOW models perform very good in applications like spam filtering, text classification
and information retrieval.

Besides computing word or sentence representations relying on single words, it is also
possible to count consecutive word sequences of a given length. These representations
are called n-grams. Differently from the previous approaches, n-grams models are
more informative, since they can detect structures that go beyond individual words: e.g.
New York, not good and, in case of n-grams consisting of more than two words, basic
syntactic structures. Given their ability to exploit more complex structures, n-grams
models are still widely used nowadays and, in some specific cases, are able to achieve
results comparable to those of state-of-the-art neural models.

2.1.2 Hand-crafted Features

In certain NLP tasks, besides exploiting statistical information that can be immediately
extracted from the words (or sentences) of a text, it may be useful to derive representa-
tions that can contain information regarding the syntactic or semantic structure of such
texts. In fact, while the linguistic properties of a text are not directly observable from the
surface of words and their order, they can be inferred from a sentence (or a document)
with varying degrees of accuracy. Nowadays, there are several NLP tools developed for
the prediction of Part-of-Speech (POS) tags, syntactic trees, semantic roles and other
properties [Straka and Strakovd, 2017, Qi et al., 2020]. The predictions of these systems
often serve as input features for further ML models.

Once a sentence (or a document) is automatically annotated with a linguistic an-
notation tool, the inferred output (i.e. the analyzed sentence, as in the example of
Figure 2.2) can be used to extracted features related to, e.g.: POS tags, dependency
labels, subtrees or paths that connect words within the tree, as well as properties of the
paths, etc. It is important to notice, however, that although these systems are highly
effective, it is acknowledged that their accuracy (especially for what concerns statistical
parsers) decreases when tested against texts of a different typology from that used in
training [Gildea, 2001]. For this reason, it is important to keep in mind that the introduc-
tion of such systems for the extraction of linguistic features may introduce errors in the
subsequent phases of the task.
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0\__
<root>
goes
root
VERB
father upstairs /supper / read
nsubj advmod/ obl advcl
NOUN ADV NOUN VERB
A boy after to son
det nmod case mark obl
DET NOUN ADP PART NOUN
of a little to his
case det amod case nmod:poss
ADP DET ADJ ADP PRON

Figure 2.2: Example of the linguistic annotation performed on the sentence "A father of a little boy goes
upstairs after supper to read to his son" with the UDPipe tool [Straka and Strakovd, 2017].

Linguistic Profiling

By relying on different levels of linguistic annotation, it is possible to extract a large
number of features modeling lexical, grammatical and semantic phenomena that, all
together, contribute to represent language variation within and across several texts.
These are the prerequisite of the linguistic profiling approach, a methodology in which
counts of a large number of linguistic features are used in order to detect and quantify
differences and similarities across texts representative of distinct language varieties
[van Halteren, 2004]. Following this approach, the linguistic structure of a text is
analyzed to extract relevant features, and a representation of the text is constructed
out of occurrence statistics of these features, either absolute/relative frequencies or
more complex statistics. This approach is nowadays applied in different contexts
and areas of research, which share the purpose of reconstructing the linguistic profile
underlying linguistic productions originating in specific contexts, e.g. in socio—culturally
defined demographic groups or individual author. In other terms, linguistic profiling
allows the extraction of "meta-knowledge" from texts [Daelemans, 2013], i.e. what
are the features and how they combine together within a specific language variety as
opposed to another one of the same nature. Meta-knowledge extraction thus consists
in associating the feature-based representation of texts with a functional context, or
with a class of speakers and/or addressees, or with individual authors. In the last years,
several studies have focused on developing profiling features capturing register, stylistic
and linguistic complexity properties [Nguyen et al., 2016]. They range from studies
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that explored features based on morphosyntactic and syntactic structure, such as POS
frequencies [Argamon et al., 2003, Otterbacher, 2010] or features based on context-free-
grammar (CFG) rules [Bergsma et al., 2012], to more complex systems that allows the
extraction of wide ranges of linguistic properties spanning across different levels of
linguistic annotation [Brunato et al., 2020].

2.2 Neural Network Approaches

Since the 2010s, ML approaches for NLP applications has gradually changed from
shallow and conventional learning models to deep learning (DL) models. Compared
with the algorithms based on shallow learning, DL methods avoid designing rules and
features by humans and automatically provide semantically meaningful representations
for text mining. When moving from the approaches described previously to those based
on DL techniques, the way in which we represent each linguistic object change from
local or symbol-based representations (e.g. word scores in BOW models) to distributed
representations. In distributed representation, each entity is represented by a pattern of
activation distributed over multiple elements and each of them is involved in representing
multiple entities [Liu et al., 2020]. The idea of distributed representation was originally
inspired by the neural computation scheme of humans and, with the great success of
deep learning and artificial neural networks (NNs), has become the most powerful and
commonly used approach for inferring representation from textual data.

2.2.1 Neural Language Models

One of the first model developed with the purpose of learning distributed representation
for words is the Neural Probabilistic Language Model (NPLM) [Bengio et al., 2003],
which is based on a NN model trained to approximate the language modeling function.
Language modeling (LM) is the task of predicting the joint probability of sequences of
words. Formally speaking, a probabilistic language model defines the probability of a
sentence s = [wy, W, ..., Wy| as:

N
P(s) = [ [ Plwilwy, ws, ..w; 1) (2.2)
i=1

Traditionally, models based on n-grams were employed for predicting the next word

in a n-gram sequence, following the Markov assumption that the probability of the
target word only relies on the previous n — 1 words. Nevertheless, language models
based on n-grams suffer from a number of limitations. First, although several smoothing
techniques have been proposed to alleviate the problem of data sparsity, a n-gram LM
still performs poorly on unseen and uncommon words. Moreover, since these models are
trained on huge datasets, the number of unique words (and possible sequences) increases
exponentially with the size of the vocabulary, causing again a data sparsity problem. To
address this issue, [Bengio et al., 2003] proposed a Neural Language Model (NLM) that
assigns a distributed vector for each word and then uses a NN architecture to predict the
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next word (See Figure 2.3). By training it trough a specific corpus, the NPLM learns
how to model the joint probability of sentences and, at time the same time, returns word
embeddings (i.e. low-dimensional word vectors) as learned parameters. In contrast with
the previous approaches, word embeddings learned by a NLM reduce the dimensionality
of categorical variables and meaningfully represent categories in the transformed space.

Influenced by NPLM, several methods that embed words into distributed represen-
tations learned by a NN have been devised: e.g. word2vec [Mikolov et al., 2013],
GloVe [Pennington et al., 2014]. Although different from each other, all of these models
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Figure 2.5: Source [Devlin et al., 2019]. ELMo architecture.

are particularly efficient and have been widely adopted in several NLP tasks over the
last few years. For instance, the popular word2vec algorithm starts from the language
modeling task and then it modifies it to produce faster results. More precisely, word2vec
came as a software package' implementing two different context representation: CBOW
and Skip-gram (Figure 2.4). CBOW predicts the center word w; given a window of
context (e.g. 5 words in the example of Figure 2.4):

P(wi|wj(‘j_,;|gl,j¢i)) = Softmcm: M Z wy (23)
lj—il<l,j#i

where P (w;|w;(;j—i|<i,j:)) is the probability of word w; given its contexts, [ is the
size of training contexts, M is the weight matrix in RIVI*™ V/ is the vocabulary and m
is the dimension of the word vector. The CBOW model is then optimized by minimizing
the sum of negative log probabilities:

L=- Z log P (wilw(j—i<ij#i)) (2.4)

On the contrary, the Skip-gram model predicts the context given the center word w;:

P(wj|w;) = Softmax(M,,)(|j —i| <1,j # 1) (2.5)

i

where P(w;|w;) is the probability of the context word w; given w; and M is the
weight matrix. The loss function is then computed as:

L==) > Pww) (2.6)

i (|5—il<l.j#1)
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Contextualized models

One of the main drawbacks of these approaches for learning word vectors is that they
can only allow a single context-independent representation for each word. For instance:

* She keeps all her money in a bank.

* On the more resisting bank, called a point bar, the river deposits some of its load
of silt and rock as it flows by.

In these two sentences, although the word bank is the same, their meanings are
different. Since traditional word embeddings models (word2vec, GloVe, etc) learn
a unique representation for each word, it is impossible for them to capture how the
meanings of words change based on their surrounding contexts. To overcome this
issue, several works proposed methods for enriching NLMs with subword information
[Wieting et al., 2016, Bojanowski et al., 2017] or learning separate vectors for each
word [Neelakantan et al., 2014]. More recently, other studies has also focused on
developing models for learning context-dependent representations [Melamud et al.,
2016,McCann et al., 2017, Peters et al., 2017].

In 2018, [Peters et al., 2018] proposed ELMo, a deep bidirectional LSTM model that
can represent each word depending on the entire context in which it is used. Specifically,
ELMo transforms words into low-dimensional vectors by feeding the word and its
surrounding text into two-layer biLMs (see Figure 2.5). Instead of using a standard
language model, ELMo utilizes a bidirectional LM to learn word representations. For-
mally, given sequence of N words (wy, ws, ..., wy ), ELMo computes a forward LM (as
in equation 2.2) and a backward LM. The backward LM is similar to the forward one,
the only difference is that it reverses the input word sequence to (wy, wy_1, ..., w;) and
predicts each word according to the future context:

N
P(s) = Hp<wi|wi+1:wi+27 W) 2.7)
i=1

Evaluating it across a diverse set of six benchmark NLP tasks, the authors showed
that ELMo obtained large performance improvement when compared with previous
state-of-the-art systems. Moreover, through ablations and other controlled experiments,
they also confirmed that the biLM layers efficiently encode different types of syntactic

and semantic information about words in context.

2.2.2 The Transformer Model

The research on representation learning in NLP took a big leap when the Transformer
model [Vaswani et al., 2017] came out. In particular, the Transformer model is based on a
encoder-decoder architecture that, relying on attention mechanisms, eschews recurrence
and relays entirely on an attention mechanism to draw global dependencies between input

"https://code.google.com/archive/p/word2vec/
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Figure 2.6: Source [Vaswani et al., 2017]. The Transformer - model architecture.

and output. This property let Transformers allow for significantly more parallelization
at the cost of quadratic complexity in the input sequence length.

Encoder-decoder models (e.g. [Bahdanau et al., 2014, Cho et al., 2014]) encode
an input sequence of symbol representations z1, ..., z, to a sequence of continuous
representations z = (z1, ..., 2, ). Given z, the decoder then generates an output sequence
(Y1, ---, Ym) Of one element at a time. At each step the model consumes the previously
generated symbols as additional input when generating the next. The Transformer fol-
lows this overall architecture using stacked self-attention and point-wise, fully connected
layers for both the encoder and the decoder, as shown in Figure 2.6. The encoder is
composed of a stack of 6 layers, each of which consists of two sub-layers: a multi-head
self-attention mechanism and a position-wise fully connected feed-forward network. The
decoder is also composed of 6 identical layers but, in addition to the two sub-layers in
each encoder layer, presents also a third sub-layer, which performs multi-head attention
over the output of the encoder stack.

As mentioned above, each layer of the Transformer models is composed of a multi-
head attention sub-layer. An attention function can be viewed as mapping a query and
a set of key-value pairs to an output, where the query, keys, values and output are all
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Figure 2.7: Source [Vaswani et al., 2017]. (left) Scaled Dot-Product Attention. (right) Multi-head
Attention consists of several attention layers running in parallel.

vectors. The output is computed as a weighted sum of the values, where the weight
assigned to each value is computed by a compatibility function of the query with the
corresponding key. Formally speaking, given the query matrix (, the key matrix K and
the value matrix V' as inputs, the output is computed as:

Attention(Q, K, V') = Softmax (QKT) Vv (2.8)
o vy, '

where dj, is the dimension of the query matrix.

The multi-head attention sub-layer linearly projects the input hidden states H several
times into the query, key and value matrices for i heads, as showed in Figure 2.7. In
other words, the multi-head attention sub-layer can be formulated as:

Multihead(H) = [heady, heads, ..., head,|W© (2.9)

where head, = Attention(HWS, HWX, HWY) and W<, W/ and W} are linear
projections. W is also a linear projection for the output.

Although originally proposed to solve the problem of machine translation, given
its ability of better modeling long-term dependencies, the Transformer model was
successfully exploited in several works to build highly performative language models
[Devlin et al., 2019, Radford et al., 2019, Sun et al., 2020b]>. Moreover, the introduction
of the Transformer architecture in the development of more powerful NLMs started a
new approach in the NLP pipeline. Previously, in fact, word embeddings were simply
adopted as input representations of another classification/regression model. Nowadays, it
became a common practice to keep using the same NN architecture in both pre-training

2 [Lin et al., 2021] for a comprehensive overview of the most popular Transformer models developed in the last few years.

18



2.2. Neural Network Approaches

ﬁp Mask LM Mask LM NL'/@@AD Start/End Spam
« @

BERT

BERT

mle]. =] &

Masked Sentence A - Masked Sentence B Question PS Paragraph
Unlabeled Sentence A and B Pair Question Answer Pair

Pre-training Fine-Tuning

Figure 2.8: Source [Devlin et al., 2019]. Overall pre-training and fine-tuning procedures for BERT.

(e.g. language modeling) and fine-tuning (e.g. sentiment analysis). This approach
is called transfer learning and is based on the key concept of transferring as much
knowledge as we can from the source setting (i.e. the pre-training phase) to the target
task or domain.

The BERT model

One of the most popular NLM based on the Transformer architecture is BERT (Bidirec-
tional Encoder Representations from Transformers) [Devlin et al., 2019]. Differently
from the original Transformer model (or e.g. the GPT one [Radford et al., 2019]), BERT
is designed to pre-train deep bidirectional representations by jointly conditioning on both
left and right context. However, since standard conditional language models can only be
trained left-to-right or right-to-left (bidirectional conditioning would allow each word to
indirectly “see itself”), the authors proposed a a modified version of the original LM
task: Masked Language Modeling (MLM). The MLM task consists in masking some
percentage of the input tokens at random, and then asking the model to predict those
tokens. BERT is also pre-trained with a next sentence prediction task (NSP), i.e. the task
of predicting if two sentences are consequent or not. For what concerns fine-tuning, the
model is first initialized with the pre-trained parameters, and then all the parameters are
fine-tuned using labeled data from the downstream tasks (e.g. NER, MNLI, CoL.A, etc.).
An overview of the pre-training and fine-tuning procedures are shown in Figure 2.8.
BERT became rapidly a milestone work in the field on NLP, achieving significant
empirical results on several tasks, including SQUAD [Rajpurkar et al., 2016], GLUE
[Wang et al., 2018], etc. Given its success, several variants of the original model for
better language representations have been proposed, such as ROBERTa [Liu et al., 2019b]
and XLNet [Yang et al., 2019]. Moreover, since the vast majority of works focused
on how BERT and BERT-based models works on different NLP tasks and less on its
workings, in the last two years there has been a growing interest in the field of study
concerned with investigating the inner behaviour of these models. We will give an
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overview of these studies in Chapter 4.

20



CHAPTER

NLP methods for Language Development

In this chapter we take a closer look at studies in the literature which have relied on
data—driven approaches, complemented with NLP-based analyses at different degrees
of sophistication, to study the process of language development and second language
acquisition, both in spoken and written language.

3.1 Investigating Language Development in L1 Learners

Over the last years, there has been a growing interest to exploit the potential of Natural
Language Processing (NLP) tools and machine learning methods in the context of
language development, with the aim of characterizing the properties of L1 learner
language and how it evolves over time, across modalities and stages of acquisition.
A similar concern has been paid to turn theoretical considerations into educational
applications, such as Intelligent Computer-Assisted Language Learning (ICALL) systems
[Granger, 2003] and tools for automatically scoring learners’ writing with respect to
language proficiency and writing quality. Two main ingredients stand at the core of
this research: the availability of large digitalized corpora of authentic texts produced by
learners, which make it possible to complement theoretical underpinnings with corpus-
based evidence, and the reliability of language analyses generated by computational
tools that allow quantifying and evaluating the impact of a large number of linguistically—
motivated indices considered in the literature as proxies of language development.
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3.1.1 Child Language Acquisition

In the context of child language acquisition, a first line of research has focused on
modeling the development of syntactic abilities in preschool children using data from the
CHILDES database [MacWhinney, 2000] and a variety of features derived from a semi—
or fully—automatic process of linguistic annotation. The CHILDES corpus contains
transcripts of spoken interactions in natural settings involving children of different ages
for over 25 languages, which makes it a reference corpus for empirical research on
language acquisition. Based on a subset of utterances from English speaking children
(age 1-6), which were automatically annotated for syntactic dependency relations,
[Sagae et al., 2005] demonstrated that the hand-crafted calculation of the Index of
Productive Syntax (IPSyn)! [Scarborough, 1990] can be effectively automated using
features extracted from the sentence parse tree, in addition to information related to
Part-of-Speech (POS) tagging. The index was introduced to overcome the limit of a well-
known metric of grammatical complexity, the Mean Length of Utterance (MLU), which
is easy to calculate yet largely criticized for its insensitivity to capture relevant changes
in child language. In this sense, the possibility of automatizing a metric like the IPSyn,
which is undoubtedly much more powerful than MLU but requires a huge effort in terms
of manual computation, represented a first important result towards the development of
computational tools supporting research on language acquisition on a large—scale basis.
In a similar vein, [Lu, 2009] proposed a heuristic—based approach to automatically assign
a score of syntactic complexity to children’s utterances according to a revised version
of the D-Level Scale [Covington et al., 2006], a seven-step developmental level scale
based on empirical observations about the emergence of increasingly more complex
constructions from the child speech literature. In this case too, a corpus of utterances
from CHILDES was automatically analyzed with a state—of—the—art English parser to
allow the extraction of the grammatical structures contained in the reference scale.
The main lesson from these studies was that NLP techniques can be used in a
reliable way to help automate the laborious computation of expressive metrics for child
language development. However, a more challenging step was tackled by [Lubetich and
Sagae, 2014], which proposed a completely data-driven approach to measure syntactic
development without the need of previously designing the sophisticated inventory of
grammatical structures associated to a given metric. In this study, a corpus of transcripts
of children from 1 to 8 years was syntactically annotated and automatically assigned
with its IPSyn score. Then, for each transcript, the IPSyn score was associated with a set
of language-independent features extracted from text (e.g. unigrams of parts-of-speech,
unigrams of syntactic dependency labels) and deliberately meant to capture information
about the syntactic structure of children’s sentences. The hypothesis was that if the IPSyn
scores could be predicted from these generic vectors, the selected features would be at
least enough informative for tracking child language development as the inventory of
IPSyn structures. Experiments were performed using a Support Vector Machine (SVM)

'IPSyn is a sophisticated metric of child language acquisition, which scores children’s utterances according to the distribution of
more than 50 syntactic constructions (e.g. relative clauses, wh-questions with auxiliary inversion, propositional complements).
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Figure 3.1: Source: [Lubetich and Sagae, 2014]. Comparison between the IPSyn development curves of
(a) the original IPSyn study (reproduced from [Scarborough, 1990]), and (b) the ones automatically
generated.

regression model. The results showed a high correlation between predicted and real
IPSyn scores (as shown in Figure 3.1), supporting the hypothesis that simple parse tree
features are as indicative of language development as a sophisticated language-dependent
metrics. The authors also tested the data—driven approach on an age prediction task
in which the regression model was trained to predict the age at which an unseen child
transcript was produced, using the feature vector extracted from his/her other transcripts
available in training. The underlying idea is that child language development could
be better approached with age, rather than with a metric score, on the assumption that
language acquisition (at least in typical setting) evolves monotonically over time. The
results showed strong correlations (r > 0.90) between actual and predicted age for the
tested children.

A similar approach was discussed in [Sahakian and Snyder, 2012], where a set of
linguistic features was computed on child speech samples and used as input for a linear
regression classifier in two age prediction experiments. In the first experiment, a child-
specific metric was used to predict the age at which speech samples were produced.
In the second one, a more language-independent developmental index was created
for predicting relative temporal orderings of speech samples. In spite of the different
implementations of the age prediction task, both these studies share the idea that child
language development could be better approached with age, rather than with a metric
score, on the assumption that language acquisition (at least in typical setting) evolves
monotonically over time.

More recently, a few studies have also started to employ more sophisticated learning
algorithms (i.e. neural networks) to investigate the child language acquisition pro-
cess. [Sagae, 2021], for instance, showed that a fully data-driven model of language
development that uses a recurrent NN encoder for utterances can track how child lan-
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guage utterances change over the course of language development in a way that is
comparable to what is achieved using established language assessment metrics designed
by experts.

3.1.2 Later Language Acquisition

The rapid and remarkable changes child language undergoes before age five justify
the amount of research for the earliest stages of acquisition, which is the framework
underlying all the aforementioned studies. However, under the assumption that linguis-
tic competence keeps growing during the school years as a result of explicit literacy
instruction [Karmiloff-Smith, 1986], research on “later language acquisition” has gained
increased attention prompted by the awareness that “becoming a native speaker is
a rapid and highly efficient process but becoming a proficient speaker takes a long
time” [Berman, 2004]. Also in this scenario corpus-based approaches complemented
with linguistically-informed indices (semi)-automatically extracted from text have started
being applied to track the development of writing skills throughout the school years.
Note that if, in the case of spoken language, the growth is tracked as a function of age,
the development of writing skills is typically addressed as a function of increasing grade
level, both in elementary and middle school children and in high school and college
level students [Crossley et al., 2011a]. Inspired by the Multi-Dimensional Analysis
(MDA) pioneered by Douglas Biber, which assumes that “linguistic features from all
levels function together as underlying dimensions of variation” [Biber, 1993], [Chipere
et al., 2001] applied this framework to the field of first language development during the
school years. This study examined a large corpus of 899 graded essays written by school
children (aged 8 to 15) with the aim of assessing the relationship between vocabulary
diversity and age and level of linguistic ability. The latter was operationalized in terms of
a normalized version of type—token ratio (TTR), to account for the effect of text length.
Results showed that vocabulary diversity is in fact correlated with age and ability level,
although with few exceptions involving the transitions between middle and high school
grades (i.e. 11 and 14 years). With this respect, the authors recognized that vocabulary
diversity is only one of the factors qualifying writing ability and that an index like TTR
could attribute lower scores to essays in which pupils intentionally use repeated words
not because they don’t have enough lexical knowledge but to produce a more coherent
discourse.

Recent developments in computational linguistics methods and machine learning
techniques have granted researchers the opportunity to assess large corpora of graded
essays to examine overall writing ability and its development. With the aid of the
automatic tool Coh-Metrix*, [Crossley et al., 2011a] enlarged the analysis to several
linguistic domains and examined to what extent essays written at various grade levels can
be distinguished from one another using a number of linguistic features related to lexical
sophistication (i.e., word frequency, word concreteness), syntactic complexity (i.e., the

2Coh-Metrix is a computational system for computing cohesion and coherence metrics in written and spoken texts
(http://cohmetrix.com).
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number of modifiers per noun phrase), and cohesion (i.e., word overlap, incidence of
connectives). The main findings show that high school and college writers develop
different linguistic strategies as a function of grade level and that even in advanced
writers, lexical and syntactic constructions continue to develop. In contrast, as the
grade increases, writers tend to produce fewer cohesive devices, which is interpreted
as a tendency towards a more elaborate and complex discourse composition. Similar
conclusions are reported by [McNamara et al., 2010], which relied on the same tool
to examine the degree to which high- and low-proficiency essays rated by experts can
be predicted by linguistic indices of cohesion, syntactic complexity, the diversity of
words used by the writer, and characteristics of words. The study showed that the three
most predictive indices of essay quality were syntactic complexity, lexical diversity and
word frequency but, interestingly, no indices of cohesion correlated with essay ratings.
In a subsequent study, [McNamara et al., 2015] evaluated the use of a hierarchical
classification approach to automated assessment of essays relying on features computed
using three different automated tools: Coh-Metrix; the Writing Assessment Tool (WAT),
i.e. a tool that includes a set of variables designed to assess the quality of written
documents; Linguistic Inquiry and Word Count (LIWC), i.e. an automated word analysis
tool that reports the percentage of words in a text that are in particular psychological
categories [Pennebaker et al., 2007]. The use of automated tools in order to facilitate
and augment formative writing assessment was also discussed in [Wilson et al., 2017].
In this study, the Coh-Metrix measures were used to demonstrate that automated tools
are able to discriminate intra-individual differences in writing skills across levels of
languages in ways that are meaningfully related to external measures of writing ability.

3.1.3 Assessing Writing Development in Non-English Languages

As expected, large part of empirical studies based on NLP approaches and machine
learning techniques has been carried out with respect to the English language and
focused on high school and college learners. However, more recently other L1s and age
samples have been addressed. In this respect, [Weiss and Meurers, 2019] investigated
writing development in German speaking students across elementary and secondary
school. In particular, relying on the Karlshruhe Children’s Text (KCT) corpus [Lavalley
et al., 2015], a cross-sectional collection of 1,701 German texts produced by German
elementary and secondary school students from first to eighth grade, the authors built
classification models for early academic language development. Using a broad set
of linguistically informed measures modeling text complexity and accuracy, together
with error rate (see Table 3.1 for an overview) and background information on topic
essay and school tracks, their best performing model was able to reach an accuracy
of 72.68% in predicting the correct grades of students according to a fourth-level
classification; notably, the model using only linguistically informed features, without
any meta-data information, performs almost at the same level. A fine-grained analysis
of the contribution of the individual features also revealed that writing acquisition in
initial grades is best characterized in terms of accuracy development, while the upper
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Feature Set Size  Description

Lexical complexity 31 measures vocabulary range (lexical density and variation) and
sophistication, measures of lexical relatedness; e.g., type token
ratio

Discourse complexity 64 measures the use of cohesive devices such as connectives; e.g.,
connectives per sentence

Phrasal complexity 47 measures of phrase modification; e.g., NP modifiers per NP

Clausal complexity 27 measures of subordination or clause constituents; e.g., subordi-
nate clauses per sentence

Morphological complexity 41 measures inflection, derivation, and composition; e.g., average
compound depth per compound noun

Language Use 33 measures word frequencies based on frequency data bases; e.g.,
mean word frequency in Subtlex-DE [Brysbaert et al., 2011]

Human Language Processing 24 measures of cognitive load during human sentence processing,

mostly based on Dependency Locality Theory [Gibson et al.,
2000] e.g., average total integration cost at the finite verb

Error Rate 41 measures ratios of error types per error or word; e.g., spelling
mistakes per word

Table 3.1: Source [Weiss and Meurers, 2019]. Overview of the feature sets used in the classification
experiments.

stages of secondary school exhibit an increased linguistic complexity, in particular in
the domains of lexis and syntactic complexity at the phrasal level.

Similar findings have been investigated by an analogous study by [Kerz et al., 2020]
carried out on the same corpus, which still focused on the predictive role of language
complexity features to tracking writing development but obtained through a sliding
window technique, in order to monitor the progression of complexity within a text.
In particular, after extracting a series of ’complexity contours’ relying on the sliding
window technique, the contours were fed into a RNN classifier to perform grade-level
classification tasks. Moreover, by performing a feature ablation analysis based on an
adpated version of the iterative sensitivity-based pruning algorithm proposed by [Diaz-
Villanueva et al., 2010]°, the authors showed that the most important features pertain
the length of production unit, lexical diversity, syntactic complexity and information
density.

3.2 Investigating Language Development in L2 Learners

Several studies of L2 writing have focused on linguistic complexity as an indicator
of writing development [Lu, 2011, Ortega, 2003]. However, Instead of considering
the construct as being multidimensional [Norris and Ortega, 2009, Bulté and Housen,
2012] and, thus, encompassing an array of different features, most studies have selected
one or two of these measures and used them as single indicators of complexity [Bulté
and Housen, 2014]. This has prevented the development of much needed research that

3The algorithm ranks the features based on a ’sensitivity measure’ and removes the least relevant variables one at a time.
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associates different steps of linguistic and written development with specific sets of
characteristics. This situation has also prevented the formation of an in-depth picture
of how those specific aspects develop in relation to the grammatical, lexical or stylistic
content taught in classes at different language course levels. Therefore, over the last
few years, research on second language acquisition has benefited from the use of
Natural Language Processing (NLP) technologies applied to large—scale corpora of
authentic texts produced by learners. In fact, the empirical evidence acquired from
L2 learner corpora, complemented with the increased reliability of linguistic features
extracted by computational tools or machine learning approaches, has promoted a better
understanding of learners’ language properties and how they change across time and
increasing proficiency level [Crossley, 2020]. A first line of research, as we already
seen for what regards studies on L1 writing development, has focused on providing
automatic ways of operationalizing sophisticated metrics of language development or to
automatically extract linguistic features to alleviate the laborious manual computation
of these metrics by experts [Lu, 2011]. A second line of research, instead, has taken the
more challenging step of implementing completely data-driven approaches, which use
wide set of linguistic features extracted from texts to automatically assign a learner’s
language production to a given developmental level and to understand which phenomena
change across proficiency levels [Crossley and McNamara, 2012].

3.2.1 Linguistic Features to assess L2 Writing Development

Given the difficulty of defining a unique indicator of linguistic complexity in the context
of L2 language development, a great variety of features from all linguistic levels have
been used as proxies for investigating which are the properties that highly influence L2
proficiency. Numerous studies revealed that properties related to syntactic complexity,
such as measures and subordination ratios, as well as more specific features pertaining
to the usage of particular structures, can be considered as one of the key skills that
affect L2 writing competence. For instance, [Lu, 2011] analyzed college-level English
as a second language (ESL) writers’ language development relying on 14 features
of syntactic complexity automatically extracted from the Written English Corpus of
Chinese Learners [Wen et al., 2005]. The results showed that the features that best
discriminate between proficiency levels are those based on the number of complex
nominals per sentence and the mean sentence length.

Features related to lexical complexity has been also investigated in the assessment
of L2 written proficiency. [Kyle and Crossley, 2015], for example, introduced the
Tool for Automatic Analysis of LExical Sophistication (TAALES), which computes
135 lexical indices related to word frequency, range, bigram and trigram frequency,
academic language and psycholinguistic word information. In particular, TAALES
was used to examine its ability to explain the variance in human judgments of lexical
proficiency and speaking proficiency for L2 learners. The experiments, performed on a
corpus of 180 unstructured writing samples from 10 L2 English learners at an intensive
program over a 1-year period [Crossley et al., 2011b], showed that the indices computed
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Figure 3.2: Source: [Bestgen and Granger, 2018]. Assignment of BNC scores to LONGDALE data.

with TAALES are able to explain 47.5% of the variance in holistic scores of lexical
proficiency. Combining different metrics of syntactic and lexical complexity, accuracy
and fluency, [Yoon, 2017] investigated the development of writing competence over
time of ESL students. Specifically, studying narrative and argumentative essays written
over the course of a 4-month semester by 37 students, the authors showed that there
were limited changes over time on most features and especially for what concerns those
related to accuracy.

Other metrics have been also proposed to investigate the development of L2 learners
writing competence. For instance, [Bestgen and Granger, 2018] assessed learners’
phraseological development proposing a methodology based on collgrams, i.e. word
bigrams that have been assigned two scores (mutual information and t-score) on the
basis of a large reference corpus. For their study, the authors used a subcorpus of the
Longitudinal Database of Learner English (LONGDALE)* consisting of 178 essays
written by 89 French-speaking English language and literature undergraduates at the
University of Louvain. Collgrams scores were computed by extracting all the bigrams in
the LONGDALE essays and then assigning their corresponding mutual information (MI)
and t-score in the British National Corpus’, as showed in Figure 3.2. Results showed
that there is a general tendency for third year texts to contain fewer non-collocational
bigrams and fewer high-scoring t-score collgrams, but more high-scoring MI collgrams.

3.2.2 Machine Learning Approaches

Studies that have adopted supervised ML approaches are mainly devoted to predict the
degree of second language proficiency according to expert—based evaluation [Crossley
and McNamara, 2012] or to model the evolution of grammatical structures’ compe-
tence with respect to predefined grades, such as the Common European Framework
of Reference for Languages (CEFRL) [Hancke and Meurers, 2013, Vajjala and Lo,

‘https://www.uclouvain.be/en-cecl-longdale.html
Shttp://www.natcorp.ox.ac.uk/corpus/
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Code Meaning Code Meaning
XC change fromxtoy NSW  no such word
AG agreement PH phraseology
AR article PL plural
AS add space PO possessive
CcO combine sentences PR preposition
C capitalization PS part of speech
D delete RS remove space
EX expression of idiom  SI singular
HL highlight SP spelling
IS insert VT verb tense
MW missing word WC word choice
NS new sentence WO word order

Table 3.2: Source [Ballier et al., 2019]. EFCAMDAT error tagset.

2014, Volodina et al., 2016]. These studies used numerous linguistic features in com-
bination with a host of different classifier or regression models. [Hancke and Meurers,
2013] proposed one of the first study employing ML techniques along with essays rated
with CEFR levels. In particular, they investigated which linguistic properties reliably
support the classification of 1,027 professionally rated essays from the MERLIN cor-
pus [Boyd et al., 20141 and comprising CEFR exams taken by German second language
learners. Relying on a broad set of 3,821 features automatically extracted with NLP
tools, they trained a classifier based on the Sequential Minimal Optimization (SMO)
algorithm to predict five CEFR levels. When using cross-validation on all data, their
system achieved 64.5% of accuracy when trained with all linguistic features. Moreover,
examining the performance of individual feature groups, the authors showed that lexical
and morphological features were the most important predictors of the CEFR levels. The
same algorithm was also tested by [Volodina et al., 2016], where a set of 61 count-based,
lexical, syntactic, morphological and semantic features were used for the classification
of CEFR levels of L2 Swedish learner essays.

Another method besides classification is to define the proficiency level prediction
as a regression task. [Vajjala and Léo, 2014] trained a Linear Regression model in
WEKA [Witten et al., 1999] to predict the CEFR levels assigned to the essays of the
Estonian Interlanguage Corpus (EIC)’, a corpus of texts written by learners of Estonian
as a second or foreign language. The feature set used for the experiments consisted
of 78 features, ranging from surface features to more complex properties related to
morphological complexity and lexical variation.

In recent years, other ML models and set of linguistic features have been introduced to
automatically assign proficiency levels to L2 learners. For instance, [Ballier et al., 2019]
investigated the predictive power of errors in terms of levels and to identify which error
types appear to be relevant features in determining proficiency levels. In particular, they

Shttps://merlin-platform.eu/index.php
Thttp://evkk.tlu.ee/?language=en
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Figure 3.3: Source: [Kerz et al., 2021]. Contour-based RNN model based on complexity contours.

analyzed the possibility of automatically predicting CEFR levels on the basis of manually
annotated errors in a subset of the EFCAMDAT corpus, an 83 million word learner corpus
collected by the Cambridge University [Geertzen et al., 2013]. The errors were manually
annotated on the basis of the Cambridge tagset, consisting of 24 types, as detailed in
Figure 3.2. To find the optimal classifier, the authors compared the scores obtained with
multinomial logistic regression, random forests, linear discriminant analysis, k-nearest
neighbours, Gaussian naive Bayes, Support Vector Machine and decision tree classifier.
Best results (F-Score = 0.70) were obtained using the random forest model. In addition,
a second analysis based on logistic regression to investigate the relative importance of
the 24 error types across learner levels revealed that mechanic errors (i.e. punctuation,
inappropriate or missing spaces, capitalization issues and spelling) are significant across
all CEFR levels, as well as the syntax error related to verb tense. Relying on the
same corpus, [Kerz et al., 2021] proposed a methodology based on the extraction of
’complexity contours’, a series of measurements of L.2 proficiency obtained by a tool
that implements a sliding window technique, and the classification trough recurrent
neural network (RNN). Specifically, the 57 features used in their work were assessed
using CoCoGen [Strobel, 2014], with the aim of enabling a local assessment rather than
a global assessment of complexity of a text. As regards the classification models, they
used a RNN classifier with Gated Recurrent Unit (GRU) cells. As shown in Figure 3.3,
the input of the model is a sequence X = (x1, o, ..., Ty, Ty, ..., T,) Where x; is the
output vector of CoCoGen for ith window of a document. The results showed that the
inclusion of complexity contours led to an increase in overall classification accuracy of
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more that 9% (from 66.1% to 75.4%). Furthermore, a feature ablation experiment based
on the technique already used in [Kerz et al., 2020] showed that the top 20 features that
contributed most to the classification accuracy are those related to frequency n-grams
pertaining to the usage of multiword sequences.

The vast majority of studies devoted to the prediction of L2 proficiency levels
described approaches that work with a single language (mostly English). However,
there are some exceptions. [Vajjala and Rama, 2018] performed experiments with cross-
lingual and multilingual classifiers in order to verify the possibility of a *Universal
CEFR classifier’. To test their hypothesis, the authors experimented with graded texts
of L2 German, Italian and Czech learners available in the MERLIN corpus. Relying
on a set of domain-agnostic features (i.e. POS and dependency n-grams), as well as
word and character embeddings and testing different classification models (e.g. logistic
regression, random forest, MLP, SVM), they showed that average results on multilingual
models are close to the ones obtained with the monolingual ones. In the context of
the REPROLANG 2020 shared task on ’Language Proficiency Scoring’, [Caines and
Buttery, 2020] reproduced and extended [Vajjala and Rama, 2018] experiments. The
results obtained in their experiments suggested that feature combination is the most
robust approach to the L2 automatic proficiency scoring task, while neural network
classifiers tend to achieve lower performance for text datasets of the same size.
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CHAPTER

Interpreting Neural Networks for Language
Understanding

Neural networks have rapidly become a central component in NLP systems in the
last few years. Models based on neural networks have obtained improvements in
accuracy and performance in various tasks, such as language modeling [Mikolov et al.,
2010, Jozefowicz et al., 2016], syntactic parsing [Kiperwasser and Goldberg, 2016]
or machine translation [Bahdanau et al., 2014, Sutskever et al., 2014]. As we already
discussed in Chapter 2, this progress has been accompanied by new neural network
architectures that rapidly replaced the traditional feature-based systems by end-to-end
models that aim to map input text to some output prediction. However, the introduction
of such systems has come at the cost of understanding how this NLP models work. For
this reason, in the last few years, the analysis of the inner workings and, especially, of
the linguistic competence learned by state-of-the-art Neural Language Models (NLMs)
has become one of the most addressed line of research in NLP. Several methods have
been implemented to obtain meaningful explanations and to understand how these
models are able to capture syntax- and semantic-sensitive phenomena [Linzen et al.,
2016, Belinkov and Glass, 2019]. These approaches range from the definition of fill-in-
the-gap probes [Goldberg, 2019] and probing tasks that a model can only solve if it has
encoded a precise linguistic phenomenon [Conneau et al., 2018, Zhang and Bowman,
2018, Hewitt and Liang, 2019], to the analysis of attention mechanism [Raganato and
Tiedemann, 2018, Htut et al., 2019, Kovaleva et al., 2019] and correlations between
representations [Saphra and Lopez, 2019] or between perplexity scores and grammatical
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generalization abilities [Hu et al., 2020].

In this chapter, we describe the studies which focused on the definition of techniques
for interpreting the inner workings on NLMs and, more specifically, on the linguistic
competence implicitly learned by those models.

4.1 Probing for Linguistic Competence

Several studies have focused at the knowledge encoded in NLMs by probing their ability
of capturing linguistic phenomena. One of the technique employed is based on the
so-called fill-in-the-gap probes, where a NLM is trained to predict the identity of masked
words based on both the prefix and suffix surrounding these words. For example, given
the pair of sentences s; = "the game that the guard hates is bad" and s, = "the game
that the guard hates are bad", the task consist on feeding the model with:

the game that the guard hates [MASK] bad

and compare the probabilities assigned to is and are. Previous studies based on
non-Transformer models (e.g. [Linzen et al., 2016]) showed that NNs for language
processing can capture a non-trivial amount of grammatical structure given targeted
supervision. [Goldberg, 2019] evaluated instead a pre-trained BERT model with two of
the syntactic test cases defined in [Marvin and Linzen, 2018a]: subject-verb agreement
and reflexive anaphora. By masking out the single focused verb in each sentence and
asking the model for its word predictions, the author showed that BERT is able of
capturing syntactic regularities with scores substantially higher than reported in previous
work. Relying on the same diagnostic dataset, [van Schijndel et al., 2019] showed
that Transformer models (i.e. GPT and BERT) did not consistently outperform the
scores achieved with a LSTM model trained on less data. In particular, they noticed
that BERT’s agreement accuracy tends to decrease as the subject becomes more distant
from its verb. [Warstadt et al., 2019] instead investigated BERT’s knowledge of negative
polarity items (NPIs), i.e. words or expressions that can only appear in environments
that are negative (e.g. any 1s an NPI since it can appear only in negative sentences). In
particular, they used BERT Masked Language Modeling (MLM) to investigate whether
the NLM is able to assign a higher probability to the token from the acceptable sentence
in a minimal pair. Results showed that BERT can distinguish between acceptable and
unacceptable sentences in the NPI domain. [Ettinger, 2020] proposed instead a set of
diagnostics targeting a set of linguistic capacities drawn from human psycholinguistic
experiments (e.g. commonsense and pragmatic inference, semantic role sensitivity,
negation, etc). Applying these tests to analyze strengths and weakness of the BERT
model, the study demonstrated that the model shows sensitivity to role reversal and
same-category distinction and it succeeds with noun hypernyms, but it struggles with
inferences and role-based event predictions.

Additional line of work deals with the use of the probing framework to test the
linguistic competence implicitly learned by state-of-the-art NLMs. Such studies showed
that these models are capable of implicitly encode within their representations several
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Figure 4.1: Source: [Liu et al., 2019a]. An illustration of the probing model setup used to study the
linguistic knowledge within contextual word representations.

properties related to morphological, syntactic and semantic information. The idea behind
this framework is actually quite simple: using a diagnostic classifier, the probing model
or probe (usually a linear classifier/regressor), that takes the output representation of
a NLM as input to perform a probing task, e.g. predict a given language property
(e.g. POS tags, as in Figure 4.1). If the probing model will predict the property
correctly, then we can assume that the NLM representation somehow encodes that
property. Formally speaking, let f : x; — y; be a neural network model mapping a
corpus of input sentences X = (z1,...,x,) to a set of target labels Y = (y1,...,¥n)
for a learned downstream task. Assume that each sentence z; is also labeled with some
linguistic annotations z;, reflecting the underlying properties we aim to detect. Let
also h;(x;) be the network’s output at the [-th layer given the sentence z; as input. To
estimate the quality of representations h; with respect to property z, a supervised model
g : hy(z;) — z; mapping representations to property values is trained. We take such
model’s performances as a proxy of H(h;(z), z). In information theoretic terms, the
probe is trained to minimize entropy H (z|h;(x)), and by doing that it maximizes mutual
information between the two quantities.

[Alain and Bengio, 2016] were among the first to use linear probing classifiers
as tools to evaluate the presence of task-specific information inside neural networks’
layers. The approach was later extended to the field of NLP, with studies showing
that NLMs learn a variety of language properties in a hierarchical manner [Belinkov
et al., 2017, Blevins et al., 2018, Tenney et al., 2019b] and that their representations
also support the extraction of dependency parse trees [Hewitt and Manning, 2019]. For
instance, [Tenney et al., 2019a] demonstrated that, training a simple probing classifier
that has access only to the per-token contextual embeddings of a BERT model, the order
in which specific abstractions are encoded within the internal representations reflects the
traditional hierarchy of the NLP pipeline: POS tags are processed earliest, followed by
constituents, dependencies, semantic roles, and coreference. In addition, they observed
that syntactic information is more localizable, with weights related to syntactic tasks
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Figure 4.2: Source: [Liu et al., 2019a]. A visualization of layerwise patterns in task performance. Each
column represents a probing task, and each row represents a NLM layer.

tending to be concentrated on a few layers, while information related to semantic tasks
is generally spread across the entire network. In general, the vast majority of works
based on the probing tasks paradigm applied to BERT internal representations agreed
that syntactic information is most prominent in its middle layers [Hewitt and Manning,
2019, Jawahar et al., 2019, Liu et al., 2019a]. However, as pointed out by [Rogers et al.,
2020] in their survey, there are some conflicting evidences about BERT’s behaviour on
more specific syntactic skills. For example, [Tenney et al., 2019a] and [Jawahar et al.,
2019] reported that lower layers are better suited for chunking, while [Liu et al., 2019a]
found that both POS-tagging and chunking obtained best probing results relying on the
information extracted from middle layers representations.

Most of the recent work on probing representations have focused on BERT. Nev-
ertheless, there are several studies that extended their analysis to other models. For
instance, [Liu et al., 2019a] quantified differences in the linguistic competence and in
the transferability of individual layers between three contextualized models: ELMo,
OpenAl transformer and BERT. Testing the models with a suite of seventeen English
probing tasks (e.g. POS tagging, syntactic constituency ancestor tagging, conjunct
identification, etc.), they showed that probing models trained with NLMs representations
are competitive with state-of-the-art task-specific models, but fail on task requiring
fine-grained linguistic knowledge (e.g. grammatical error detection and named entity
recognition). They also found that the fist layer output of LSTM-based models (ELMo)
is the most transferable, while it is the middle layers for Transformers (See Figure
4.2). [Fayyaz et al., 2021] probed the representations of three NLMs with different
pre-training objectives: BERT (masked language modeling), XLNet (permuted language
modeling, [Yang et al., 2019]) and ELECTRA (replaced token detection, [Clark et al.,
2020]). The results demonstrated that XLNet accumulates linguistic knowledge in the
earlier layers than BERT, while ELECTRA linguistic competence is mainly concen-
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trated in the final layers. Moreover, employing RSA similarity measure on fine-tuned
models, they showed that XLLNet is more prone to forgetting linguistic knowledge in
final layers and that the changes in representations are proportional to the gain provided
in a downstream task.

Despite this emerging body of work, there are still several open questions: which
probing model should we use for assessing the linguistic competence of a NLM? Are
probes the most effective strategy to achieve such goal? Moreover, as pointed out
by [Tenney et al., 2019a], "the fact that a linguistic pattern is not observed by our
probing classifier does not guarantee that it is not there, and the observation of a
pattern does not tell us how it is used". These questions fostered complementary lines
of research, with the specific aim of identifying new techniques to perform probing
tasks or to verify their validity in extrapolating linguistic competence out of NLMs
internal representations. Among these, several work investigated which model should
be used as probe and which metric should be employed to measure their performances.
Some studies advocated that simpler models are better suited as they solve the probing
task relying more on the representations received as input rather than on sophisticated
abstractions [Hewitt and Manning, 2019, Liu et al., 2019a, Hall Maudslay et al., 2020].
Conversely, [Pimentel et al., 2020b] argued that one should always chose the highest-
performing probe regardless of its complexity in order to have a better estimate of the
information associated to the representations. On a different note, [Voita and Titov,
2020] suggested a novel information-theoretic metric to measure the actual model effort
on the task by balancing probe inner complexity and task performance. Specifically,
instead of evaluating probe accuracy, they evaluated minimum description length (MDL)
of labels given representations, i.e. the minimum number of bits needed to transmit the
labels knowing the representations.

Concerning instead works facing the issue of investigating the effectiveness of the
probing paradigm, [Hewitt and Liang, 2019] proposed control tasks, a set of tasks that
associate word types with random outputs. Measuring the difference between linguistic
task accuracy and control task accuracy (defined as selectivity), they tested whether the
probing accuracy on a linguistic task truly reflects the properties of the representation.
In particular, they showed that multilayer perceptron (MLP) probes achieve very low
selectivity, suggesting caution in interpreting how their results reflect properties of
representations. Along the same line, [Ravichander et al., 2021] tested probing tasks
by creating control datasets where a property is always reported in a dataset with the
same value, thus it is not discriminative for testing the information contained in the
representations. Their experiments highlighted that the probe may learn a property also
incidentally, thus casting doubts on the effectiveness of probing tasks.

4.2 Analysis of Attention Mechanism

Another body of work is focused on the analysis of attention mechanism in contex-
tualized NLMs and, specifically, on how linguistic knowledge is directly encoded in
model’s self-attention heads. [Clark et al., 2019] found that the majority of BERT’s
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Figure 4.3: Source: [Kovaleva et al., 2019]. Both axes on every image represent BERT tokens of an
input example, and colors denote absolute attention weights (darker colors stand for greater weights).
The first three types are most likely associated with language model pre-training, while the last two
potentially encode semantic and syntactic information.

attention heads focus on specific group of tokens and, especially, on the special tokens
[CLS] and [SEP]' and on periods and commas. Nevertheless, evaluating the directions
of prediction of each attention head, they also showed that certain heads specialize
to specific dependency relations: e.g. direct objects attending to their verbs or noun
modifiers attending to their nouns. [Kovaleva et al., 2019], instead, identified five fre-
quently occurring patterns within BERT self-attention heads (see Figure 4.3) that are
consistently repeated across different heads and tasks. Moreover, they demonstrated
that most heads do not directly encode any non-trivial linguistic information when a
model is fine-tuned on specific downstream tasks, since only fewer than 50% of heads
exhibit an "heterogeneous" pattern. Proposing a novel methodology to observe, for a
given syntactic phenomenon, the intrusion effects of distractors on BERT’s self-attention
mechanism, [Lin et al., 2019] found that BERT encode aspects of syntactic structure that
are relevant for subject-verb agreement and reflexive dependencies through attention
weights, and that this information is represented more accurately on higher layers. [Vig
and Belinkov, 2019] measured the proportion of GPT-2’s total attention from a head that
focuses on tokens with specific POS tags or connected in a dependency relations. The
results obtained showed that: i) attention heads target specific POS tags depending on
layer depth; ii) attention aligns with dependency relations most strongly in the middle
layers.

Similar to the approaches previously described, the view that attention heads have
a clear meaning and, therefore, they could be used as proxies for the interpretation
of NLMs’ internal mechanisms is currently debated [Jain and Wallace, 2019, Brunner
et al., 2020]. For instance, [Serrano and Smith, 2019] found that, modifying attention
values of a NLM model by hard-setting the highest attention values to zero, the number
of attention values that must be set to zero to alter the model’s prediction is often too
large, thus concluding that attention is not suitable for interpreting model’s decision.
Challenging the assumptions underlying [Serrano and Smith, 2019], [Wiegreffe and
Pinter, 2019] showed instead that alternative attention distributions found via adversarial
training methods perform poorly relative to traditional RNNs attention mechanisms

'[CLS] is a special symbol added in front of every input example and [SEP] is a special separator token.
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when used in a diagnostic MLP model. Following these results, the authors suggested
that attention mechanisms in RNNs do in fact learn something meaningful about the
relationship between tokens and model’s prediction.

It is also important to note that the vast majority of work based on the analysis of
Transformer-based attention mechanisms focused mainly on attention patterns. How-
ever, the Transformer architecture is not only composed of the multi-head attention. For
instance, [Kobayashi et al., 2021] extended the analysis to the whole attention block,
1.e. multi-head attention, residual connection and layer normalization. Specifically, the
authors introduced a decomposition of the operations in the whole attention block ex-
ploiting the norm-based analysis previously defined in [Kobayashi et al., 2020]. Testing
their approach on 32 variants of the masked language models (BERT with five differ-
ent sizes, BERT-base trained with 25 different seeds and RoBERTa with two different
sizes), they showed that the operation via residual connection and layer normalization
contributes more to the internal representations than expected, thus suggesting a relative
small impact of the multi-head attention.

4.3 Correlating NLMs and Linguistic Abilities

Alternative approaches have been proposed to analyze the linguistic knowledge implic-
itly encoded by state-of-the-art NLMs. As mentioned previously, several studies focused
on the relationship between internal representations or perplexity scores and grammat-
ical generalization abilities. For instance, [Chrupata and Alishahi, 2019] proposed
an approach based on Representation Similarity Analysis (RSA) [Kriegeskorte et al.,
2008] to study the correlation between neural representations of strings and structured
symbolic representations of these strings. The core idea of RSA is to find connections
between data from computational modeling by correlating representations spaces via
their pairwise similarities. In order to measure the similarities between these symbolic
representations, the authors used tree kernels, i.e. a metric to compute the proportion
of common substructures between trees. Testing their approach on a sample of data
from the English Web Treebank (EWT) [Silveira et al., 2014] and with increasing values
of \?, they showed that BERT? encode a substantial amount of syntactic information
compared to random models and simple bag-of-words representations. Moreover, they
found that RSA correlation scores peak between layers 15-22, thus indicating that the
final layers of the model are more dedicated to encoding properties of sentence other
than syntax.

[Saphra and Lopez, 2019], instead, investigated how representations of linguis-
tic knowledge are learned over time in a NLM relying on SVCCA (Singular Vector
Canonical Correlation Analysis) [Raghu et al., 2017], a general method to compare
the correlation of two vector representations. In particular, they compared the repre-
sentations of a simple two-layer LSTM language model at each epoch of training with
representations of other models trained to predict specific linguistic categories (e.g. POS

2The parameter ) is used to scale the relative importance of tree fragments with their size.
3They tested the 24-layer version of the BERT model.
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Figure 4.4: Source: [Saphra and Lopez, 2019]. SVCCA used to compare the layer h? of a language
model and layer h'' of a tagger

or semantic tagger, as showed in Figure 4.4). The results showed that different aspects
of linguistic structure are learned at different rates within a single recurrent layer: POS
tags are acquired earlier, while global topic information are continuously learned during
training.

Other studies focused instead on the relationship between NLM perplexity scores
and syntactic knowledge. Perplexity is an evaluation metric for language models and it
measures how well a probability distribution (or probability model) predicts a sample.
With the recent success gained by NLMs across a variety of NLP tasks, the notion of
perplexity has started being investigated also to dig into issues related to the interpretabil-
ity of contextual word representations, with the aim of understanding whether there
is a relationship between this metric and the grammatical abilities implicitly encoded
by a NLM [Gulordava et al., 2018, Marvin and Linzen, 2018b, Kuncoro et al., 2019].
In this context, [Hu et al., 2020] proposed a systematic evaluation of the syntactic
knowledge of NLMs by investigating the relationship between a model’s perplexity
and its performance on targeted syntactic assessments. Specifically, they assembled
a large set of test suites (e.g. syntactic coverage, garden-path effects, gross syntactic
expectation, etc.) inspired by the methodology of experimental sentence processing
and psycholinguistic research and tested it on four classes of neural models: LSTM,
ON-LSTM [Shen et al., 2018], Recurrent Neural Network Grammars (RNNG, [Dyer
et al., 2016]) and GPT-2. The results showed that, despite all models achieved high
syntactic generalization (SG) scores, there is a dissociation between perplexity and
SG scores, thus suggesting that targeted syntactic evaluation can reveal information
that may be orthogonal to perplexity. Similarly, [Warstadt et al., 2020], in their work
that introduces the Benchmark of Linguistic Minimal Pairs (BLiMP)*, tested three
NLMs (LSTM, GPT-2 and Transformer-XL, [Dai et al., 2019]) by observing whether
they assign a higher probability to the acceptable sentence in each minimal pair of the

‘https://github.com/alexwarstadt/blimp
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dataset. The authors concluded that neural LMs are able to acquire robust knowledge of
morphological agreement and some syntactic phenomena, e.g. ellipsis and control/rais-
ing. Nevertheless, these models show weaker evidence of knowledge about argument
structure or the semantic properties of quantifiers. It is also interesting to notice that,
in contrast with the results obtained in [Warstadt et al., 2019] with the BERT model,
the model tested on the BLiIMP benchmark seem to struggle in distinguishing between
acceptable and non-acceptable sentences when dealing with NPI licensing.
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CHAPTER

Tracking the Evolution of Written Language
Competence in L1 Italian Learners

In this chapter we present the work we have carried out in order to monitor the devel-
opment of written language competence in L1 learners. Specifically, we focus on the
experiments we devised in order to assess the evolution of writing skills of Italian L1
learners exploiting a classification approach that makes use of a wide range of linguistic
features automatically extracted from morpho-syntactic and syntactic annotated texts.

5.1 Introduction

Moving in the framework of studies based on L1 language development, we introduced
an NLP-based stylometric approach to model the evolution of written language com-
petence in Italian L1 learners. According to the core assumptions of computational
stylometry [Daelemans, 2013], formal properties of a text characterizing its style can
reveal underlying traits about the author, e.g. in terms of gender, age, ethnicity, as well
as language proficiency. However, while traditional stylometric techniques are typically
based on a close set of ad-hoc linguistic features selected according to specific task in
mind (e.g. authorship attribution, authorship verification, gender classification), our
approach relies on a wide set of linguistically motivated features extracted from students’
essays, which have already shown to be effective in several scenarios, all related to
modeling the ‘form’ of a text, rather than the content: from the prediction of human
Jjudgments of perceived linguistic complexity [Brunato et al., 2018] to the automatic
identification of the native language of a speaker based on his/her productions in a
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second language (L.2) [Malmasi et al., 2017].

The proposed approach is developed and tested on texts contained in the CItA (Corpus
Italiano di Apprendenti LI) corpus, the first longitudinal corpus of essays written by
Italian L1 learners enrolled in the first and second year of lower secondary school
[Barbagli et al., 2016]. As stated by their creators, this two—year period is considered as
crucial for the development of written language, which undergoes remarkable changes
both in the way students write and how they approach to writing, as a consequence of
being exposed to a more formal way of writing teaching from the first to the second
year of lower secondary school. The longitudinal nature of the corpus, complemented
with the emphasis on the importance of the learning period under investigation, makes
CItA particularly suitable to test the effectiveness of a computational model of writing
development in L1 learners. Specifically, we decompose this problem into two main
research questions:

* Is it possible to track the individual learning trajectory in writing by automatically
predicting the chronological order of two essays written by the same student at
different time?

* Which typologies of language phenomena contribute more to the prediction task
and how they change according to different temporal spans?

5.1.1 Our Approach

In order to track how written language competence evolves in the two considered school
grades, we ask whether the writing development curve of a student can be automatically
learned. We model the problem as a binary classification task in which a machine
learning classifier has to predict the relative order of two essays using a wide set of
linguistically motivated properties automatically extracted from the L1 learners essays
contained in the CItA corpus.

The classifier uses a Linear Support Vector Machine (LinearSVM) as machine learn-
ing algorithm. We rely on LinearSVM rather than more powerful learning algorithms,
such as Recurrent Neural Networks (RNNs), in order to obtain meaningful explanations
when the classifier outputs its predictions, so as to anchor the observed patterns of
language development to explicit linguistic evidence. To prevent overfitting, we train
and test our model in a cross-domain manner, using essays of students from different
schools during the training and testing phase. Doing so, the algorithm is tested not
only on essays written by different students, but also on students coming from different
schools.

We further extract and rank the feature weights assigned by the LinearSVM in order
to understand which typology of linguistic features contributes more to the classification
task. The underlying assumption is that the higher will be the weight associated with a
specific feature, the higher will be its importance in solving the classification task and,
consequently, in tracking the students written language evolution.

Finally, to provide first insights into the possible influence of background variables on
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predicting writing development, we ran the same binary classification task distinguishing
students enrolled in the center and suburban schools and we assessed the confidence
of our classifier in the two scenarios. Since the confidence reflects the uncertainty of
the model estimates (i.e. the higher the confidence the easier the prediction was for the
classifier), this measure can be viewed as a mean to approximate the degree of changes
in the learning curve of each student. That is, we can assume that the classifier is more
confident when the two essays for which the relative order has to be predicted show
greater differences with respect to the considered features.

In what follows, we first introduce the two main ingredients of our approach, namely
the corpus and the set of linguistic features. We then describe the set-up of the exper-
iments and discuss the obtained results in light of the main research questions of the
study.

5.1.2 The CItA Corpus

As previously discussed, the availability of authentic texts produced by language learners
is of pivotal importance. Such resources can differ according to the modality (i.e. written
texts or speech transcriptions), the typologies of learners considered (e.g. preschool
children, first or second language students), the goals of analysis (e.g. theoretical studies
or development of educational applications). For the purpose of our study, we relied on
CItA (Corpus Italiano di Apprendenti L1), a longitudinal corpus of essays written by
the same students in the first and second year of lower secondary school [Barbagli et al.,
2016]. This makes the corpus particularly suitable to track the evolution of L1 written
language competence over the time. The corpus was collected during the two school
years 2012-2013 and 2013-2014 as part of a broader on-going study carried out in the
framework of the IEA'-IPS (Association for the Evaluation of Educational Achievement)
activities [Lucisano, 1984]. As stated by their creators, the collection of essays in CItA
was motivated by two underlying hypotheses. The former is that students’ competence
in writing undergoes a variety of relevant changes from the first to the second year of
lower secondary school, as a consequence of being exposed to a more formal writing
teaching. The latter is that the development of written language competence could be
related to background variables of students, such as the city area where the school is
located (historical center or suburbs), the language(s) the students speak at home or their
parents’ employment. To make it possible exploring the effects of these variables, the
CItA essays were collected from 7 different schools located in Rome, 3 of which in the
historical center and 4 in suburbs. In addition, all students whose essays are comprised
in the final corpus were asked to answer to a questionnaire of 34 questions to obtain
information about their biographical, socio-cultural and sociolinguistic background. For
example, they were asked to provide biographical information such as the language(s)
the students usually speak at home, when and where they were born, their parents’
education, etc.

"http://www.iea.nl
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First year Second year
School  Students  Essays School  Students  Essays
1 25 123 1 25 108
Center Center
2 27 143 2 28 130
3 24 138 3 23 117
School  Students  Essays School  Students  Essays
Suburbs 4 21 >8 Suburbs 4 22 62
5 19 77 5 19 64
6 24 66 6 24 146
7 13 64 7 14 56
Total 153 669 Total 155 683

Table 5.1: Composition of the corpus.

Typology Prompt example

Reflexive What’s your attitude regarding the reading activity?

Narrative Narrative essay in which you describe an episode of bullying

Descriptive Describe a primary school teacher you are particularly close to

Expository Write a news story that the media has been dealing with recently

Argumentative Mobile phones in class: what do you think about it and how do you think it could be solved?

Common Prompt A boy younger than you has decided to enroll at your school. He wrote to you to ask you
how to write an essay that can get good grades by your teachers. Send him a friendly letter
describing at least five points that you believe are important for your teachers when they
evaluate an essay.

Table 5.2: Prompts examples according to the different typologies.

Corpus description

The corpus contains a total of 1,352 essays written by 156 students (see Table 5.1).
The essays belong to five textual typologies, which reflect the different writing prompts
students were asked to respond: reflexive, narrative, descriptive, expository and argu-
mentative. In addition, a prompt common to all schools was also assigned at the end
of each year. Specifically, at the end of second year, students were asked to respond to
the Italian version of Task 9 of the IEA-IPS study ( [Lucisano, 1984]; [Visalberghi and
Costa, 1995]), i.e. a letter of advice to a younger student on how she/he should write in
order to get good grades at high school; at the end of the first year, they were presented
with a modified version of Task 9 still with the same aim. Table 5.2 shows examples of
prompts given to the students according to the different typologies.

As shown in Table 5.3, there are some differences over the two years and the seven
schools. First of all, it can be noted that the number of prompts differs among the seven
schools: teachers of the schools located in the city center tend to give a higher numbers
of prompts than their colleagues in the sub-urban schools. Secondly, if reflexive prompts
are the most frequent textual type in the two years, from the first to the second year the
distribution of narrative prompts are halved while the expository and argumentative ones
are doubled. This different distribution is a consequence of the approach adopted by
teachers to teach writing: writing a narrative essay is considered as a simpler task since
it requires more rudimentary cognitive and writing skills, than writing an argumentative
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Typology Center Suburbs Total

First year
Reflexive 25 13 38
Narrative 18 4 22
Descriptive 2 1 3
Expository 0 1 1
Argumentative 2 2 4
Sub-total 47 21 68
Second year

Reflexive 24 5 29
Narrative 3 6 9
Descriptive 0 0 0
Expository 4 5 9
Argumentative 5 4 9
Sub-total 36 20 56

Table 5.3: Distribution of typologies of prompts.

or expository essays, for which more complex linguistic and discourse-structuring
competences are required [Barbagli, 2016].

Error Annotation

One of the characteristics that mostly distinguishes CItA from other corpora of L1
Italian learners, such as those described in [Marconi, 1994], is that the essays were
annotated according to different types of linguistic errors occurring in text. Error
annotation is a challenging issue since it assumes that a deviation from a linguistic norm
is occurring, a norm which is in its turn an arbitrary concept defined only according
to social conventions. Moreover, the annotation of errors in L1 corpora is a much less
common practice than in L2 corpora, where this level of information is typically used to
investigate the properties of interlanguage [Brooke and Hirst, 2012] or as a reference
resource for automatic error detection and correction tasks [Dahlmeier et al., 2013].
In the absence of a L1 error taxonomy already available for the Italian language, it
was defined a new scheme inspired to Berruto’s definition of “neo-standard Italian” as
linguistic norm [Berruto, 1987] following the literature on the evaluation of written skills
of L1 Italian learners ( [Visalberghi and Costa, 1995]; [De Mauro, 1983]; [Colombo,
2010]).

As shown in Table 5.4, it is a three-level schema including grammatical, orthographic
and lexical errors, which makes it also similar to already existing schemes in other
languages (e.g. [Granger, 2003] for French as a second language). Following the the
annotation format proposed by [Ng et al., 2013], CItA was annotated as follows:

[...] scapparono al piano di sopra e dal <M t="200" c="buio">buglio</M> <M
t="113" c="spunt0">spuntarono</M> un esercito [...]

([...] they ran away upstairs and from the darkness an army appeared)
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Iyear Il year

Class of error Type of Modification Freq% Freq %
Grammar
Use of tense 7.78 15.67
Verbs Use of mood 4.25 4.92
Subject-Verb agreement 2.85 4
Prepositions Erroneous use 6.48 6.75
Omission/Redundancy 1.03 0.72
Erroneous use 5.09 3.54
Pronouns Omission 0.41 0.59
Redundancy 2.70 1.57
Erroneous use of relative pronoun 2.13 1.70
Articles Erroneous use 5.81 3.54
Conjunctions Erroneous use 0.57 0.52
Other 7.31 5.18
Total 46.41 48.7
Orthography
Double consonants Omission 6.74 505
Redundancy 3.27 3.67
Omission 3.21 1.64
Use of b Redundancy 1.66 1.11
Erroneous use of monosyllabic words 4.87 4.07
Monosyllables ..
po and po instead of po’ 1.66 1.64
Apostrophe Erroneous use 4.82 4.52
Other 21.77 23.02
Total 47.63 44.72
Lexicon
Vocabulary Erroneous use 5.60 6.56

Table 5.4: Error annotation schema. Errors varying significantly over the two years (i.e. p < 0.05) are
bolded.

where the textual span of error is marked by <M> and </M> (Mistake), the attribute
t (type) is the macro-class and subclass of error, and ¢ (correction) reports the corrected
form. In the reported example, there is a generic orthographic error (the word buglio
instead of the correct one buio) and a grammatical mistake concerning Subject-Verb
agreement (the third person plural of the verb instead of the required third person
singular).
The annotation was manually performed by a teacher of lower secondary school and
revised by two undergraduate students in digital humanities, who were adequately
trained on the task annotation guidelines.
Inspecting the statistical distribution reported in Table 5.4, it can be noted that in both
years (Rows Total) orthographic and grammatical errors are the most frequent ones
(47.63-44.72% and 46.41-48.7% respectively) while lexical errors are far less (about
6%). More specifically, the most frequent errors affect the area of orthography without
distinction into specific typologies (i.e. the class Other) (22.32%) followed by the
erroneous use of verb tenses (11.26%), the grammatical not—classified errors (6.37%)
and the erroneous use of prepositions (6.6%). Note that the majority of errors has a

50



5.1. Introduction

statistically significant variation over the two years thus showing that several common
trends in the development of writing competence occur during the transition from the
first to the second year.

Linguistic Annotation

To allow the extraction of linguistic features used as predictors of writing development in
the classification experiments, the CIfA corpus was firstly automatically annotated using
UDPipe [Straka et al., 2016], a NLP pipeline carrying out basic pre-processing steps, i.e.
sentence splitting and tokenization, POS tagging, lemmatization and syntactic parsing,
according to the Universal Dependencies (UD) annotation framework [Nivre et al.,
2016]. Although we used a state—of—the art pipeline, it is well-acknowledged that the
accuracy of statistical parsers decreases when tested against texts of a different typology
from that used in training [Gildea, 2001]. In this respect, learners’ data are particularly
challenging for general-purpose text analysis tools since they can exhibit deviation from
correct and standard language [Berzak et al., 2016]. For instance, missing or anomalous
use of punctuation (especially in 1st grade prompts) could already impact on the coarsest
levels of text processing, i.e. sentence splitting, and thus may affect all subsequent levels
of annotation. Nonetheless, if we can expect that the predicted value of a given feature
might be different from the real one (especially for features extracted from more complex
levels of annotation such as syntax), we can also assume that results will be consistent,
at least when parsing texts of the same domain. The validity of this claim has been
shown in other studies relying on engineered features similar to ours for classification
or linear regression analyses. For instance, [Dell’Orletta et al., 2011b] proved that the
values of a set morpho-syntactic and syntactic dependency features are comparable
when extracted from a gold (i.e. manually annotated) and an automatically annotated
corpus of the same domain (i.e. biomedical language). In a study aimed at investigating
dependency distance minimization in English using a large diachronic corpus, [Lei and
Wen, 2020] checked whether any possible errors from the parser significantly affected
the results of their analysis. To this end, they manually revised the annotation of a
subset of the automatically parsed corpus under investigation and correlated the values
of their examined features (i.e. mean and normalized dependency distance) extracted
from the automatically and the manually revised portion, obtaining very high correlation
scores. We applied a similar approach to our corpus in order to observe the impact of
possible parsing errors on the reliability of the feature extraction process with respect to
learner data. Specifically, we randomly extracted a few parsed sentences from both I
and II-year CItA essays for a total of ~800 tokens and we manually revised the output
of the automatic annotation in every step. We then extracted all monitored features
from the manually revised sentences and compared these values to the corresponding
ones extracted from the automatically parsed sentences. The resulting Spearman’s rank
correlation coefficient between the two samples shows that, with the only exception of
the distribution of parataxis relations (dep_dist_parataxis), linguistic features extracted
from automatically annotated and manually revised sentences are extremely highly
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Level of Annotation  Linguistic Feature Label
Sentence Length tokens_per_sent

Raw Text Word Length char_per_tok
Document Length n_sentences
Type/Token Ratio for words and lemmas ttr_form, ttr_lemma
Distribution of UD and language—specific POS upos_*, xpos_*

POS tagging Lexical density lexical_density
Inflectional morphology of lexical verbs and auxiliaries verbs_*, aux_*
Depth of the whole syntactic tree parse_depth

Dependency Parsing Length of dependency links and of the longest link links_len, max_links_len
Average length of prepositional chains and distribution by depth  prepositional_chain_len, prep_*
Clause length (n. tokens/verbal heads) token_per_clause
Order of subject and object subj_pre, subj_post, obj_pre, obj_post
Verb arity and distribution of verbs by arity verb_edges, verb_edges_*
Distribution of verbal heads per sentence verbal_head_sent
Distribution of verbal roots verbal_root_perc
Distribution of dependency relations dep_*
Distribution of subordinate and principal clauses principal_prop, subord_prop
Length of subordination chains and distribution by depth subord_chain_len, subord_*
Relative order of subordinate clauses subord_post, subord_prep

Table 5.5: Linguistic features used in the experiments.

correlated (average p = 0.93).

5.1.3 Linguistic Features

To extract our set of linguistic features, we relied on Profiling—UD [Brunato et al., 2020],
a multilingual tool specifically conceived to carry out linguistic profiling on corpora
annotated in UD—-style. Universal Dependencies (UD) [Nivre et al., 2016] is an ongoing
project aimed at developing corpora with a cross-linguistically consistent annotation for
many languages, with the goal of facilitating multilingual parser development, cross-
lingual learning, and parsing research from a language typology perspective. The choice
of relying on UD-style annotation makes the process of feature extraction language—
independent, since similar phenomena are annotated according to a common annotation
scheme at morpho—syntactic and syntactic level of analysis.

Profiling—UD allows the computation of a wide set of features encoding a variety
of lexical and grammatical properties of a text informed by the literature on linguistic
complexity and language development. They range from superficial ones, such as the
average length of words and sentences, to morpho—syntactic information concerning
the distribution of parts-of-speech (POS) and the inflectional properties of verbs, to
more complex aspects of syntactic structure deriving from the whole parse tree and from
specific sub—trees (e.g. subordinate clauses.). The set of features is reported in Table 5.5
according to the level of annotation from which they derive.

By looking at the statistical distribution of these features, it can be noted, for example,
that the essays written in the second year contain a lower percentage of conjunctions,
pronouns (especially clitic and personal ones), and a higher percentage of prepositions
and nouns with respect to the essays of the first year (Table 5.6). These statistically
significant differences® suggest that II-year students possibly exploit more the pro-
drop potentiality of the Italian language in their writing, thus making less use of overt

2The statistical significance for all features reported in the next three Tables was assessed using the Wilcoxon-rank-sum-test.
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Feature Iyear (%) IIyear (%)
Conjunctions 6.88 6.38
Determiners 13.86 14.12
Preposition 10.53 11.21
Pronouns 8.97 8.04
Clitic pronouns 4.58 4.08
Personal pronouns 1.58 1.2
Nouns 16.02 16.38

Table 5.6: Distribution of major morpho—syntactic features varying significantly between the two school
years.

Features Iyear (%) IIyear (%)
preverbal subjects 84.19 82.57
postverbal subjects 15.81 17.14
preverbal objects 35.69 30.39
postverbal objects 64.31 69.61
nominal subjects (dep_nsubj) 5.59 5,04
passive subjects (dep_nsubj:pass) 0.19 0.28
adverbial clause modifiers (dep_advcl) 0.53 0.62
copular constructions (dep_cop) 2.13 1.89
coordination (dep_cc) 4.38 4.14
parse depth 4.589 4.716

Table 5.7: A subset of syntactic features varying significantly between the two school years.

Feature Iyear (%) 1l year (%)
Indicative mood 94.83 92.60
Subjunctive mood 2.61 3.31
Imperfect tense 16.48 10.99
Present tense 42.36 49.28
Verbs-1PerSing 15.22 13.55
Verbs-1PerPlu 6.96 5.25

Table 5.8: Distribution of verbal morphology features (mood, tense and person) varying significantly
between the two school years.

pronouns. At syntactic level (Table 5.7), this speculation seems to be corroborated by
the lower distribution in second year’s essays of syntactic relations linking a nominal
subject (either headed by a noun phrase or realized as a pronoun) to its verbal head
(dep_nsubj). Moreover, when the subject is overtly expressed, it tends to be placed in
the canonical position (i.e. left to the verb since Italian is a SVO language), especially
by younger writers.

While the distribution of verbs is almost similar between the two years (i.e. around
13%, without significant variation), the use of verbal morphology changes from the first
to the second year (Table 5.8). As could be expected, the indicative mood is predominant
in all essays, although in the second year students start using in a slightly higher per-
centage also more complex moods, such as the subjunctive. Instead, a greater variation
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affects the use of tenses, especially the imperfect one, which decreases significantly in
the second year. On the one hand, this could be expected since imperfect indicative
verbs are easier than other past tenses of the Italian verbal morphology. On the other
hand, this variation might be related to the different type of essays assigned in the two
years. In fact, in the second year the typology of narrative essays, for which is commonly
required the use of imperfect tenses, is less predominant across prompts. In this regard,
also the more extensive use of first singular and plural person verbs in essays written
younger students is indicative of a more subjective writing style.

5.1.4 Tracking the evolution of written language competence

Our first research question was aimed to explore whether it is possible to automatically
track the development of students’ writing competence across time. We model this
problem as a classification task, starting from the assumption described in [Richter
et al., 2015]: given a set of chronologically ordered essays written by the same student,
a document d; should show a higher quality level with respect to the ones written
previously (d;). Thus, given two essays d; and d; written by the same student, we want
to classify whether #(d;) > 1(d;), where t(d;) is the time in which the document d; was
written.

For this purpose, we built a classifier operating on morpho-syntactically tagged and
dependency parsed essays which assigns to each pair of documents (d;, d;) a score
expressing its probability of belonging to a given class: 1 if #(d;) > 1(d;), O otherwise.
For each pair of essays, we built an E vector:

E=Vi+Vi+ (Vi =V}) (5.1)

where V; and V; are, respectively, the feature vectors of the first and second essays,
and V; — V} is the vector difference between them. Vectors are composed by the
values of multi-level linguistic features both automatically extracted, as shown in Sec.
5.1.1, and manually annotated (i.e. features related to the error annotation) in CItA.
As previously mentioned, the classifier uses linear Support Vector Machines (SVM) as
machine learning algorithm.

We split all texts of the CItA corpus into four sets, pairing essays written by the same
students considering all the possible temporal spans at the same time (All essays) and
considering only essays written at a distance of one month (/ month), one year (I year)
and two years (2 years). Table 5.9 summarizes the statistics of the four datasets. We
evaluated the system with a 7-fold cross validation in which every fold is represented
by a different school. It follows that in each experiment the test set is composed by
documents which are not included in the corresponding training set.

Each line of the training and test sets follows this structure:

Student code, Label, E vector

where Student code i1s an identifier assigned to the student, Label could be 1 or O
depending on the two essays’ order and E vector is the feature event associated with the
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Temporal span  Number of samples

All essays 7,228
1 month distance 1,308
1 year distance 348
2 years distance 208

Table 5.9: Number of samples/E events within each dataset.

Samples #1 #2 #3 Baseline
All essays 7,228 0.53+0.08 0.55+£0.09 0.58+0.09 0.45=+0.06
1 month 1,308 049+0.03 0.50£0.05 0.54+0.04 0.50=+0.03
1 year 348 0.54 £0.15 0.63£0.09 0.65+0.15 0.61+0.12
2 years 208 0.66 +0.16 0.71 £0.15 0.754+0.14 040+ 0.14

Table 5.10: Cross-school results (in terms of weighted accuracy + standard deviation) for the three sets
of experiments.

two essays.

Three different sets of experiments were devised to test the performance of our
system, which differ with respect to the number and type of linguistic features extracted
for each essays. In the first set (#/) we used only the lexical, morpho-syntactic and
syntactic features extracted from the parsed corpus. In the second set of experiments
(#2) we added to them a set of features related to word frequency (word frequency class),
which was measured as the average class frequency of all lemmas in the document. The
class frequency was computed for each lemma and form exploiting the itWAC (Italian
Web as Corpus) corpus® as follows:

B freq(MFL)
Cy = [log, WJ (5.2)
B freq(MFF)
Cus = [log, “Freq(CF) ] (5.3)

where MFL and MFF are, respectively, the most frequent lemma and word form of the
corpus, and CL and CF are the considered lemma and word form. In the third experiment
(#3) we expanded our set of linguistic features with those related to the distribution
of the different kinds of errors annotated in CIfA (Section 5.1.2): grammatical errors;
orthographic errors; lexical errors and punctuation errors.

In order to verify the effectiveness of our model, we compared our classification
results with the ones obtained with a baseline computed with a LinearSVM that takes
as input the average sentence length of the essays for each sample pairs. Classification
results are reported in Table 5.10.

As a general remark, we observe that the larger the temporal span between the
tested documents, the higher the achieved accuracy. Not only does this suggest that the
pairs of essays written by each student at more distant times exhibit a quite divergent

3 A 1.5 billion words corpus made up of texts collected from the Web [Baroni et al., 2009]
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Features Two years distance
Grammatical errors 0.74
Orthographic errors 0.72
Lexical errors 0.70
Punctuation errors 0.68

Table 5.11: Classification results using different sets of annotated error features.

linguistic profile — which makes the classification task easier —, but also that linguistic
patterns underlying writing development are consistent across students and schools.
Remember indeed that in all the experiments the classifier is tested on essays written by
different students, but also on students coming from different schools. If we compare
the results obtained considering the / month and 2 years time intervals we can notice
an improvement of 20% in terms of accuracy scores. As expected, accuracy scores in
the I month temporal span are comparable with those obtained with the simple baseline,
proving that the complexity of this task does not allow to obtain reliable results when
considering excessively short time intervals.

Focusing on the three different set of experiments, we can see that the results tend to
improve as more features are used for classification. In particular, the contribution of
vocabulary—related features operationalized in terms of word frequency is particularly
effective when considering essays written at a long term distance, such as / year or
2 years. In addition, differently from what is reported in [Richter et al., 2015], we
observe a general improvement when lexical, morpho—syntactic and syntactic features
are complemented with features related to the distribution of errors made by students.

With this respect, to have a better understanding of their contribution in the automatic
classification, we repeat our experiments using the four sets of error-related features
(i.e. grammatical, orthographic, lexical and punctuation) in a separate way. As shown in
Table 5.11, the improvement is due to the presence of grammatical errors. Indeed, the
accuracy obtained using only this typology of errors, in addition to general linguistic
features, is even higher than the one obtained using the four sets of errors together
(from 0.73% to 0.74%). These data are in line with the qualitative observations reported
in Section 5.1.2: since grammatical errors, as well as orthographic errors, undergo a
significant variation over the two school years, they allow the classifier to obtain better
results.

Cross-Prompt Testing

As reported in Section 5.1.2, the assigned prompts are differently distributed over the
two years. This observation may cast doubts on the effectiveness of our features to serve
as real proxies of writing development rather than as prompt-related characteristics. To
discard this hypothesis and verify whether the results we obtained generalize across
prompts, we replicate the experiments in a cross-prompt scenario. In particular, we
used the four datasets previously described (All essays, 1 month, 1 year and 2 years)
and we performed the experiments with a cross—prompt validation strategy, i.e. testing
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Samples #1 #2 #3 Baseline
All essays 2,662 0.64 +0.04 0.64 £0.04 0.67+0.04 0.52+0.01
1 month 532 047+0.02 046+£0.05 0.50+0.01 048 +0.04
1 year 128 0.53+0.05 053+£0.05 0.68+0.10 0.65=+0.16
2 years 119 0.82+0.04 0.84+005 085+0.05 0.48+0.01

Table 5.12: Cross-prompt results (in terms of weighted accuracy £ standard deviation) for the three set
of experiments along with total test samples size (Samples).

the resulting model only on pairs of essays that have the same prompt. The new
classification results are reported in Table 5.12. As we can notice, our model achieved
better results with respect to the length baseline for all the datasets and according
to the three sets of experiments, thus allowing us to confirm that the system clearly
generalizes across prompts and is actually modeling written language evolution rather
than prompt-dependent characteristics.

5.1.5 Studying linguistic phenomena

The results obtained in the previous experiments showed that it is possible to predict
the chronological order of two essays written by the same student by using features of
different nature. This confirms that relevant transformations occur in L1 writing during
the transition from the first to the second year of lower secondary school. However,
very little has been said about the contribution of each single feature in the classification
tasks. Since we showed that not all the linguistic features vary significantly during the
2-year temporal span, we can reasonably assume that within the set of our features,
some of them are also more predictive than others for the classification. To better
explore this question, we established a ranking of the most important features according
to the different classification scenarios. To do this, we evaluated the importance of
each linguistic property by extracting and ranking the feature weights assigned by the
LinearSVM model that uses features of all categories (i.e. linguistic features, word class
features and error—related ones).

Table 5.13 shows the rankings of the 20 most important features according to three
considered temporal spans. As we can see, error—related features acquire relevance
as the temporal span increases: in the second classification experiment, where the
task was to predict the chronological order of essays written at a distance of one year,
three of the ten most significant features derive from error annotation. Similarly, in
the third classification scenario, error-related features occur three times in top-ranked
positions and one of them, i.e. omission of pronouns, is the first ranked one. The
omission of pronouns in required contexts, complemented with their unnecessary use
(i.e. error_pronouns_redundancy, 12th-ranked), could be indicative of the influence of
spoken language phenomena on written texts by middle—school students, which is still
pervasive even at longer temporal spans. At syntactic level, this seems to be confirmed
by the occurrence of dislocated dependencies (dep_dislocated) in the first position of
the ranking derived by classifying the order of essays written at a distance of one year.
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1 month distance

1 year distance

2 years distance

dep_punct
upos_AUX
upos_X
dep_aux
upos_PUNCT
verbs_form_Part
dep_cop
upos_VERB
verbs_form_Fin
xpos_AP
dep_det:poss
xpos_SP
dep_conj
wfc-adjectives-lemma
wfc-nouns-word
verbs_3PerSing
dep_root
dep_acl:relcl
dep_nsubj
dep_advcl

dep_dislocated

xpos_PP

xpos_BN

xpos_PD

xpos_DD

aux_form_Fin
error_preposition_omission_redundancy
avg_lexical_errors
error_vocabulary-erroneous-use
n_sentences

dep_vocative

xpos_RI

wfc-nouns-lemma
n_prepositional_chains
n_tokens

aux_tense_Imp

verb_edges_3
error_conjunctions-misuse
error_full-stop-omission
avg_punctuation_errors

error_pronouns_omission
n_tokens

wfc-verbs-lemma
n_prepositional_chains
aux_tense_Past

xpos_RI

obj_pre

obj_post

n_sentences

dep_aux

aux_1PerP1
error_pronouns_redundancy
verbs_num_pers_2PerSing
aux_form_Ger

xpos_FB

dep_conj

aux_tense_Imp
wfc-adjectives-word
error_monosyllabes-misuse-po’
wfc-nouns-word

Table 5.13: Ranking of the first 20 features for three different temporal spans.

According to the UD annotation tagset, this syntactic relation has the specific function
of indicating fronted or postposed elements that do not fulfill the usual core grammatical
relations of a sentence, which is quite typical in speech. In addition to these features,
what helped more the classifier in the same classification scenario is the different use of
functional categories by students, specifically pronouns (xpos_PP, xpos_PD), negative
adverb (xpos_BN) and determiners (xpos_DD, xpos_RI).

Beyond error-related features, morpho-syntactic information still has a relevant role
in classifying essays when the longest temporal span is considered. However, in this case,
features related to verbal inflectional morphology (tense, mood and person) are more
highly ranked than those concerning the distribution of core grammatical categories
(see, e.g. aux_tense_Past, aux_form_Ger, aux_tense_Imp). This is in line with what we
observed in the linguistic profiling section (Table 5.6), where differences concerning
the use of verbal features in the two years were found to be statistically significant.
Interestingly, with the exception of the words frequency class, lexical features do not
seem to be particularly relevant and this allows us to confirm what already reported
in [Barbagli, 2016], namely that vocabulary distribution, lexical density and TTR (Type
Token Ratio) do not change significantly over the two school years.
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Urban area 1 month distance Two years distance
Center 0.579 0.629
Suburbs 0.513 0.670

Table 5.14: C,,, values according to the two urban areas.

5.1.6 Investigating relationships between writing competence and background
information

The last part of this study presents the first results of a pilot study that we performed
in order to explore the hypothesis put forth in [Barbagli, 2016] that there could a
relationship between the observed trends in the evolution of writing competence and the
school environment of the students. This information was explicitly collected as one of
the background variable of each student included in the corpus.

To this end, we inspect again the classification results by computing the confidence of
our model (C},), i.e. the measure that, as mentioned in Sec. 5.1.1, depicts the uncertainty
of the classifier estimates. In particular, C),, can be defined as the variation between the
two probabilities assigned by our classifier to each labels (1 if #(d;) > #(d;), 0 otherwise).
On the assumption that the more confident the model in predicting the chronological
order of essays written by a given student, the easier is the classification task for that
student, we can state that higher C,,, values could are indicative of a greater evolution
in student’s writing competence. On the contrary, if we consider essays for which our
classifier is less confident with its predictions, we can infer that the two essays do not
present noticeable variations in their linguistic profile, although they were written in two
different periods.

Specifically, we performed an experiment by computing the C,,, values of our clas-
sifier for two different temporal spans (I month distance and Two years distance) and
then dividing the students according to the two different areas of Rome: historical center
and the suburbs. As we can see in Table 5.14 there is no particular difference between
the results. However, as the temporal span increases the C),, values for both urban areas
show a slight improvement, in particular for the students of the suburban schools. This
allows us, partly, to confirm that the evolution of writing competence is more evident for
those students attending schools in suburbs, possibly because their entry level is lower,
as suggested by the answers obtained from the questionnaires.

59






CHAPTER

Tracking the Evolution of Written Language
Competence in L2 Spanish Learners

Starting from the experiments devised in the previous chapter, we present a comple-
mentary study in which we applied the same NLP stylometric approach to study the
evolution of writing competence of L2 learners of Spanish.

6.1 Introduction

After having investigated the possibility of tracking the evolution of written competence
of L1 learners, we decided to extend our methodology in the context of L2 written
language development. In particular, we proposed a study aimed at modeling writing
development in learners of Spanish as a second and Heritage language. We decomposed
the problem into two main research questions: (i) verify if it is possible to predict the
relative order of two essays written by the same student at different course levels using
a wide set of linguistic predictors automatically extracted from Spanish L2 written
productions; (ii) understand which typologies of language phenomena contribute more
to the identification of writing skills’ evolution and whether such properties reflect the
teaching guidelines of the courses.

Following the approach devised in [Richter et al., 2015] and in the previous experi-
ments we addressed the first research question as a classification task: given a pair of
essays written by the same student and ordered according to the course level (dy, ds),
we classify whether C'(dy) > C(d,), where C(d;) and C(ds) correspond respectively
to the course levels during which the student wrote d; and d,. Specifically, we model
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Course Level Essays Tokens Students
Beginner (SPA 1-3) 2,058 485,435 1,130
Intermediate (SPA 21-22) 445 120,102 244
Composition (SPA 23-24) 536 151,197 287
Heritage (SPA 31-33) 459 130,684 244
Total 3,498 887,418 1,905

Table 6.1: Summary of corpus composition.

Terms Enrolled Students Essays Tokens

2 267 984 290,399
3 111 612 179,306
4 32 242 74,956
5 5 48 13,977

Table 6.2: Longitudinal data summary.

the problem as a binary classification task, training a Linear Support Vector Machine
(LinearSVM) to predict the relative order of two essays written by the same student
using our set of linguistic predictors automatically extracted from the POS tagged and
dependency parsed essays.

We further extracted and ranked the feature weights assigned by the linear model
in order to understand which typology of linguistic features contributes more to the
classification task at different course levels. The assumption is that the higher the weight
associated with a specific feature, the greater its importance in solving the classification
task and, consequently, in modeling the student’s written language evolution.

The contributions of this study are as follows:

* We present, to the best of our knowledge, the first data—driven study which uses
linguistic features from student data to model the evolution of written language
competence in Spanish as a Second Language (SSL);

* We show that it is possible to automatically predict the relative order of two essays
written by the same student at different course levels using a wide spectrum of
linguistic features;

* We investigate the importance of linguistic features in predicting language growth
at different course levels and whether they reflect the explicit instruction that
students receive during each course.

6.1.1 The COWS-L2H Corpus

We analyzed development of student writing from the Corpus of Written Spanish of L2
and Heritage Speakers, or COWS-L2H [Davidson et al., 2020]. This corpus consists
of 3,498 short essays written by students enrolled in one of ten lower-division Spanish
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courses at a single American university. Concretely, these courses are organized as
follows: Spanish (SPA) 1, 2, and 3 are the introductory courses, which exposes students
to the basic morphosyntax of Spanish; SPA 21 and 22 are the intermediate courses,
focused on the development of reading and listening skills with a strong emphasis on
lexical development; SPA 23 and 24 are two courses that specifically aim at improving
writing skills with an emphasis on academic writing in Spanish; SPA 31, 32, and 33 are
the Heritage speakers courses. These courses are grouped into four categories based on
student proficiency and experience, as shown in Table 6.1.

Student compositions in the corpus are written in response to one of four writing
prompts, which are changed periodically. During each period (an academic quarter,
which consists of ten weeks of instruction) of data collection, students are asked to
submit two compositions, approximately one month apart, in response to targeted writing
prompts. These composition themes are designed to be relatively broad, to allow for
a wide degree of creative liberty and open-ended interpretation by the writer. Prompts
are intended to be accessible to writers at all levels of proficiency. Additionally, the
use of broad themes invites the use of a variety of verb tenses and vocabulary. The use
of specific writing prompts allows us to control for known topic effects on syntactic
complexity among L2 learners [Yang et al., 2015].

The essays in the corpus were submitted by 1,370 unique student participants, with
415 student participants having submitted compositions in two or more academic terms
(for a maximum of eight writing samples from each student). Thus, the corpus contains
both cross-sectional and longitudinal data on the development of student writing in the
context of a university language program. The distribution of the essays across the levels
is uneven due to the distribution of student enrollment in Spanish courses. Because more
students enroll in beginning Spanish courses than in advanced levels, a larger number of
essays submitted to the corpus come from these beginner-level courses. The L2 Spanish
learners are primarily L1 speakers of English, but due to the diverse student population
of the source university, a large number are L1 speakers of other languages such as
Mandarin. However, as English is the university’s language of instruction, all students
are either L1 or fluent L2 speakers of English. Those students enrolled in the Heritage
courses (SPA 31 - 33) are, for the most part, L1 speakers of Spanish, having learned
Spanish from a young age in the home, and L2 speakers of English; these Heritage
learners have had little-to-no academic instruction in Spanish.

We focused our study on the longitudinal data in the COWS-L2H corpus. We were
thus able to model the chronological development of L2 Spanish writing by monitoring
how the writing quality of an individual student’s compositions increase with time.
Student participation is summarized in Table 6.2.

6.1.2 Linguistic Features

The set of linguistic features considered as predictors of L2 written competence evolution
is based on those described in [Brunato et al., 2020] already used in the experiments of
the CItA corpus. Moreover, since it is acknowledged that lexical proficiency plays an
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Features SPA1 SPA2 SPA3 SPA21 SPA22 SPA23 SPA24 SPA31 SPA32 SPA33
Raw Text Properties
char_per_tok 43 44 4.42 4.42 443 4.46 441 4.42 4.42 4.38
n_sentences 20.0 24.01 23.57 20.8 20.17 19.54 17.92 16.06 16.31 15.46
tokens_per_sent 10.7 13.16 13.74 15.71 16.43 17.11 19.01 19.95 20.07 20.94
Morphosyntactic information
lexical_density 51 5 .5 49 A48 A48 A7 A8 A7 47
upos_ADJ .07 .06 .06 .06 .05 .05 .05 .05 .05 .05
upos_ADP .09 .1 11 11 11 12 12 13 12 13
upos_NOUN .16 .16 .16 .16 .16 17 17 17 .16 .16
upos_PRON .07 .07 .07 .07 .07 .07 .07 .07 .08 .08
upos_PUNCT 14 13 12 12 11 A1 A1 .09 .09 .09
upos_SCONJ .01 .02 .03 .03 .04 .04 .04 .04 .05 .05
upos_VERB 12 12 12 12 12 12 12 13 13 13
Inflectional morphology
aux_mood_Cnd .02 .03 .04 .03 .06 .05 .04 .05 .06 .04
aux_mood_Ind 97 96 92 94 91 92 94 91 91 93
aux_mood_Sub .01 .01 .03 .02 .03 .02 .03 .03 .03 .03
aux_tense_Imp .05 .16 21 21 24 24 22 23 2 24
aux_tense_Past .02 .1 .09 12 12 11 12 11 12 11
aux_tense_Pres 92 73 .69 .65 .63 .65 .66 .63 .66 .63
verbs_tense_Imp .02 .08 A1 13 .16 14 13 17 15 14
verbs_tense_Past 11 28 28 3 35 3 31 31 28 33
Verbal Predicate Structure
verb_edges 2.3 2.5 2.52 2.62 2.67 2.63 2.7 2.71 2.68 2.76
verb_edges_4 .09 13 13 .16 .16 15 .16 .16 .16 .16
verbal_head_sent 1.52 1.8 1.92 2.13 2.26 2.3 2.54 2.73 2.86 2.95
Global and Local Parsed Tree Structures
parse_depth 2.88 3.27 3.37 3.6 3.78 3.94 421 4.49 4.59 4.56
max_links_len .65 v 72 .96 92 99 1.2 1.24 1.21 1.39
token_per_clause 7.17 7.49 7.28 7.52 7.41 7.55 7.62 7.42 7.16 7.26
Order of el t
obj_post .67 .68 .67 .64 .65 .69 .69 .6 .64 .6
obj_pre .33 32 33 .35 .35 31 31 .39 .36 4
subj_pre 8 .84 .82 .84 .84 .84 .83 .81 78 79
Use of Subordination

subord_chain_len 1.06 1.15 1.18 1.21 1.24 1.24 1.26 1.29 1.33 1.32
subord_2 .08 11 13 15 17 17 18 .19 2 2
subord_dist 24 33 .38 4 44 A7 5 .56 .58 57

Table 6.3: A subset of linguistic features extracted for each course level. For each feature it is reported
its average value.

important role in predicting L2 writing development [Crossley and McNamara, 2012],
we also added as training features the word frequency class for each word form/lemma
was computed exploiting the Spanish Wikipedia (dump of March 2020) using the
measures defined in Sec. 5.1.4.

A first overview of how and to what extent all these features vary across the documents
of the COWS-L2H Corpus is provided in Table 6.3. Essays written by students in the
first course levels are longer in terms of number of sentences but they contain shorter
sentences compared with those written in the more advanced courses. As concerns
the distribution of POS, essays written in the first years show a lower percentage of
e.g. adpositions (upos_ADP) and subordinate conjunctions (upos_SCONJ) typically
contained in longer and well-articulated sentences, while the use of main content words
(e.g. upos_NOUN, upos_VERB) is almost comparable across years. The variation
affecting morphosyntactic categories is reflected by the lexical density value, i.e. the
ratio between content words over the total number of words, which is slightly higher in
beginner essays. If we focus on differences concerning verbal morphology, a linguistic
property particularly relevant in the development of Spanish curriculum, we can see
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how the use of more complex verb forms increases across course levels. Essays of the
introductory courses contain a lower percentage of verbs in the past (verbs_tense_Past)
and imperfect tenses (verbs_tense_Imp) (out of the total number of verb tenses) as well
as a lower percentage of auxiliary verbs (aux_*) typically used in more complex verb
forms, such as copulative verbs or periphrastic moods and tenses. Interestingly, features
related to verb inflectional morphology have the highest standard deviation, suggesting
a quite wide variability among learners. A similar trend towards the acquisition of more
complex verb structures can also be inferred by considering features extracted from the
syntactic level of annotation: essays of the intermediate courses contain for example
sentences with a higher average number of dependents of verbs (verb_edges) and in
particular of verbs with a complex argument structures of 4 dependents (verb_edges_4).
As long as Spanish learners start mastering the second language, linguistic properties
related to the construction of more complex sentences increase. This is for example the
case of the depth of sentence tree (parse_depth) and of the length of syntactic relations
(max_links_len) as well as of features concerning the use of subordination.

6.1.3 Experiments

We train a LinearSVM that takes as input pairs of essays written by the same students
according to all the possible pairs of course levels (e.g. SPA 1 - SPA 2, SPA 2 - SPA
3, etc.). Specifically, we extract for each pair the linguistic features corresponding to
the first and second essays and the difference between them. We standardize the input
features by scaling each component in the range [0, 1]. To test the actual efficiency of
the model, we perform the experiments with a 5-cross validation using different students
during the training and testing phases. In order to provide our system with negative
samples, we expand our datasets by adding reversed samples.

Since the students were asked to write essays responding to different prompts, we
devise two set of experiments, pairing all the essays written by the same students that
have: (i) the same prompt; (ii) both same and different prompts. Also, because of
the small number of training samples for certain pairs of course levels we also decide
to perform the experiments on a sentence-level, extracting the linguistic features for
each sentence in the longitudinal subset of the COWS-L2H corpus and pairing them
on the basis of the previously defined criteria. In order to obtain reliable results both
on the document and sentence configurations, we consider only datasets at different
pairs of course levels that contain at least 50 and 20 samples (including negative pairs)
respectively. All the classification experiments are performed using the majority class
classifier as baseline and accuracy as the evaluation metric.

Tracking Writing Skills’ Evolution

Table 6.4 reports the results obtained at both the document and sentence levels, pairing
essays that have the same prompt (Same columns) and both the same and different
prompts (All columns). As a general remark, we observe that best results are those
obtained with the document-level experiments. This is quite expected, since sentence-
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Course Levels Documents Sentences
Same All Same All

Score Samples Score Samples | Score Samples Score Samples
All Levels 0.68 2,208 0.7 5,536 0.59 1,047,156 0.61 2,570,366
SPA1-SPA2 0.88 280 0.9 624 0.7 143,660 0.71 316,264
SPA'1-SPA3 0.97 178 0.95 440 0.75 85,032 0.75 209,048
SPA 1 - SPA 21 # # 0.91 116 0.61 14,298 0.7 46,738
SPA 2 - SPA 3 0.62 528 0.62 1,192 0.56 323,332 0.56 724,400
SPA 2 - SPA 21 0.61 62 0.61 188 0.57 35,754 0.58 104,442
SPA 2 - SPA 22 # # 0.59 68 0.55 8,048 0.63 29,670
SPA 2 - SPA 23 # # 0.77 52 # # 0.58 27,420
SPA 3 - SPA 21 0.59 158 0.55 364 0.53 82,104 0.54 190,596
SPA 3 - SPA 22 0.61 64 0.58 186 0.54 31,886 0.6 93,486
SPA 3 - SPA 23 # # 0.89 106 0.59 13,404 0.59 45,804
SPA 3 - SPA 24 # # # # # # 0.68 11,276
SPA 21 - SPA 22 0.59 132 0.62 302 0.52 57,326 0.54 132,454
SPA 21 - SPA 23 0.52 58 0.74 154 0.54 27,038 0.57 67,634
SPA 21 - SPA 24 # # 0.7 92 0.47 9,268 0.56 35,384
SPA 22 - SPA 23 0.71 76 0.69 186 0.55 35,272 0.56 79,168
SPA 22 - SPA 24 0.69 158 0.73 164 0.5 23,446 0.56 66,184
SPA 23 - SPA 24 0.45 168 0.49 386 0.48 61,654 0.49 137,786
SPA 31 - SPA 32 0.8 100 0.63 212 0.55 27,608 0.55 57,790
SPA 31 - SPA 33 0.52 100 0.53 198 0.51 24,830 0.48 48,990
SPA 32 - SPA 33 0.54 96 0.59 256 0.5 24,154 0.55 66,466

Table 6.4: Classification results in terms of accuracy obtained both at document and sentence levels
along with number of samples for each dataset. Same and All columns report the results obtained by
pairing essays that have same prompt and both same and different prompts respectively. Since the
labels within each dataset has been balanced, baseline accuracy is 0.50.

level classification is a more complex task that often requires a higher number of
features to gain comparable accuracy [Dell’ Orletta et al., 2014]. If we focus instead on
the distinction between Same and All results, we notice that higher scores are mainly
achieved considering pairs of essays that also have different prompts. Again, this result
is not surprising because adding pairs of essays with different prompts within each
datasets increases the number of training samples, thus leading to better scores. Despite
this, the results obtained according to the Same and All configurations are quite similar
and this allows us to confirm that classification accuracy is not significantly harmed if
the two essay’s prompts are the same, thus showing that our system is actually focusing
on written language competence evolution properties rather than prompt-dependent
characteristics.

More interestingly, we notice that considering all the possible course level pairs at the
same time our system is able to achieve quite good results, especially at document level
classification (0.68 and 0.70 of accuracy for Same and All configurations respectively),
thus showing that it is possible to automatically predict the chronological order of two
essays written by the same student by using a wide spectrum of linguistic properties.

In general, our best scores are obtained by considering all the experiments that
include essays written by students in the Beginner category (SPA 1, 2 and 3). This is
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SPA1-SPA2 SPA1-SPA3 SPA2-SPA3 SPA3-SPA21 SPA22-SPA23 SPA31-SPA32
aux_mood_Ind lexical_density *  aux_tense_dist_Pres *  lexical_density upos_PUNCT upos_ADP *
aux_tense_Pres * upos_ADP * aux_mood_Ind upos_DET dep_punct dep_case *
aux_tense_Imp * upos_VERB * aux_tense_Imp * dep_punct upos_ADV verbal_head_sent
aux_tense_Past * upos_NOUN * aux_tense_Past upos_VERB dep_advmod upos_PUNCT
upos_ADP * upos_ADJ dep_punct * aux_tense_Pres upos_CCONIJ upos_PRON
verbs_tense_Past * upos_PRON upos_PUNCT * upos_ADJ dep_cc * dep_mark
upos_VERB * dep_det dep_nsubj * upos_NOUN upos_VERB dep_punct
upos_INTJ * upos_PUNCT * dep_iobj dep_nsubj * dep_case aux_tense_Imp
verbal_head_sent *  upos_PROPN upos_PRON upos_PRON aux_form_Part verbs_tense_Pres
verbs_tense_Imp * dep_case * verbal_head_sent * upos_SCONJ upos_ADP subord_dist
upos_ADJ * upos_SCONJ * dep_cop upos_ADV * dep_mark dep_cop
ttr_form upos_AUX subj_post * upos_PUNCT dep_compound dep_cc
upos_PRON * dep_punct * aux_form_Fin aux_form_Fin upos_INTJ * lexical_density
upos_PROPN * subord_dist * verbs_tense_Imp * dep_cc * dep_nsubj * upos_AUX
upos_PUNCT * upos_CCONIJ * upos_AUX aux_tense_Imp upos_AUX upos_ADV

Table 6.5: Feature rankings obtained with sentence-level (Same) classification results for six different
course level pairs. Features that vary in a statistically significant way with Wilcoxon Rank-Sum test
are marked with *.

particularly evident for the experiments that compare essays written during SPA 1 as
one of the two considered course levels, most likely because the evolution from knowing
nothing at all of a specific L2 to knowing enough to start writing is actually bigger that
the difference between knowing a little and then learning a little more. Additionally,
students at this beginning stage of L2 acquisition tend to use markedly fewer words per
sentence, and the words they user are shorter; these features are particularly salient for
the classifier. Observing instead the results obtained pairing student essays belonging to
the other three course level categories (Intermediate, Composition and Heritage), we
notice a considerable drop in classifier performance. For instance, if we compare essays
written by students in the Composition category (SPA 23 - SPA 24) we can see that
all the classification results are below the majority class baseline classifier. A possible
reason might be that these two courses are specifically aimed at improving learners’
writing skills, with an emphasis on academic writing in Spanish, thus involving specific
properties, such as discourse-level characteristics, which are possibly not covered by our
set of features.

Understanding Linguistic Predictors

Beyond classification results, we were interested in understanding which typologies of
linguistic phenomena are more important for solving the classification task and whether
such properties correlate to the teaching curriculum. To better explore this second
research question, we perform a feature ranking analysis along with the classification
experiments, which allows us to establish a ranking of the most important features
according to the different classification scenarios. That is, we evaluate the importance
of each linguistic property by extracting and ranking the feature weights assigned
by the LinearSVM. Table 6.5 reports the feature rankings obtained with sentence-
level classification results, including pairs of essays that have the same prompt (Same
configuration). We considered in particular six different course level pairs which are
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mostly representative of different stages of writing development. The focus on sentence-
level results rather than document-level allows capturing more fine-grained linguistic
phenomena.

Because the COWS-L2H corpus was collected from a single university with set
curriculum, we are able to compare the features utilized by the LinearSVM with the
course curriculum. We find that the feature rankings as obtained from the LinearSVM
can in many cases be explained by differences in curriculum at each level. For example,
from SPA 1 to SPA 2 the most important features used by the model are all related to
verbal morphology, particularly morphology of auxiliary verbs. This can be explained
by the fact that SPA 1 and 2 are the courses where students are introduced for the first
time to the notions of verb tense and person. SPA 1 is focused on managing the idea
of person and number in a tense that is not particularly difficult to understand for a
speaker of English: the present tense. SPA 2, however, introduces the difficult difference
between the three tenses in the past: imperfect, preterite and plus-perfect. This fact
explains why distribution of past tense main verbs (verbs_tense_Past) differs between
essays written during SPA 1 and SPA 2. Additionally, SPA 2 introduces composed verb
tenses that require an auxiliary. Specifically, the auxiliary verbs “haber”, “estar”, and
“ser” are introduced in SPA 2 as part of the past tense forms. Thus, it is not surprising
that the top four features used by our classifier for distinguishing between essays written
in SPA 1 and SPA 2 are related to the use of auxiliary verbs.

Classification of essays written by students while enrolled in SPA 2 and SPA 3 also
relies largely on differences in verbal morphology. While the distribution of present
tense auxiliary verbs is the most important distinguishing feature, other compound verb
tenses play a role at these levels. For example, differences in the distribution of imperfect
auxiliary verbs (aux_tense_Imp) may be explained by the use of the pluperfect tense.

Between SPA 1 and SPA 3, the most important discriminating feature is lexical
density. While there is no specific focus on lexical density in the course curriculum,
this feature is a natural extension of increasing sentence complexity. [Davidson et al.,
2019] shows that as students progress through the Spanish course sequence, lexical
density tends to decrease due to the increased use of function words in more complex
sentences. Additionally, one of the final items covered in the SPA 1 curriculum is the
use of the prepositions “por” and “para”. Also, at all three beginning levels students
are taught to use prepositions in constructing more complex sentence structures. This
may explain why preposition usage (upos_ADP) is a key discriminating feature between
essays written in SPA 1 and SPA2, as well as between SPA 1 and SPA 3. The prominence
of this feature indicates that students are learning to more confidently use prepositions
as their writing skills develop. The fact that (upos_ADP) is not a key discriminating
feature between SPA 2 and SPA3 indicates that these changes are occurring primarily at
the SPA 2 level, which accords with the course curriculum.

In spite of the still reasonable accuracy in discriminating more advanced levels, mak-
ing a direct connection between the features used by the SVM and the course curriculum
becomes more difficult. At these more advanced levels students have developed an indi-
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vidual writing style which results in a more complex relationship between the curriculum
and the syntax used by students. At the SPA 3 - SPA 21 interval, the only three features
which vary in a statistically significant way are the distributions of nominal subjects
(dep_nsubj), adverbs (upos_ADV), and coordinating conjunctions (dep_cc). While the
increased use of adverbs may be seen as a general sign of increased writing complexity,
coordinating conjunctions are taught explicitly during SPA 3. Conjunctions are also
practiced intensively during both SPA 21 and SPA 22 explaining their importance as a
discriminating feature between these levels.

One of the clearest connections between curriculum and the features used by the Lin-
earSVM occurs at the Heritage levels SPA 31 and SPA 32. Heritage learners of Spanish
raised in an English-dominant country are known to use “English-like” prepositions in
Spanish. For example, [Pascual y Cabo and Soler, 2015] report on preposition strand-
ing (which is grammatical in English by ungrammatical in Spanish) among Heritage
speakers of Spanish in the United States. We find that distributional differences in the
use of prepositions, represented by the features upos_ADP and dep_case, is the key
distinguishing feature between essays written by the same student during SPA 31 and
SPA 32. This difference indicates that students are learning to use prepositions in a more
“Spanish-like” manner, which is one of the major areas of feedback which instructors
provide to Heritage students.
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Discussion and Future Directions

Relying on two learner corpora, our studies examined the potential of a NLP-based
stylometric approach to identify relevant transformation occurring in L1 and L2 learners’
writing. In particular, the longitudinal nature of the two corpora allowed us to track the
evolution of the written competence in Italian L1 and Spanish L2 students, as well as
to identify which linguistic features are more predictive of this evolution and how they
change according to the considered temporal span.

As regards our first study, the classification results obtained in the three experiments
have demonstrated that linguistic features automatically extracted from text not only
allow making explicit the relevant transformations occurring in L1 learners’ writing
competence but can be exploited as effective predictors in the automatic classification of
the chronological order of essays written by the same student, especially at more distant
temporal spans. Moreover, by testing our approach on a cross-prompt scenario, we show
that the considered features capture markers of language evolution which are not related
to the textual typology of the essay.

When training our model using also the twenty—six features related to error annota-
tions, we obtained a general improvement in almost all cases. These results demonstrate
that analyzing the diverse typologies of errors made by students in their texts is effective
to capture aspects of the written language competence evolution. In this regards, we
also noticed that the errors which allow the classifier to achieve a better accuracy are the
grammatical ones. This could be due both to the larger amount of errors of this category
(46.41% and 48.7% of the total in the first and second school year) and by the fact that
grammatical errors, as well as orthographic errors, have a significant variation over the
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two school years, thus probably allow the classifier to obtain better results.

Regarding the second research question, extracting the feature weights assigned by
the linear model we were able to establish a ranking of the most important features
according to different temporal spans. Changes of the resulting rankings in the different
classification scenarios suggest that both linguistic and error-related features contribute
in a different way according to time intervals. For instance, it was shown that features
related to the error annotation acquire much more relevance as the temporal span
increases, and this allows us to confirm that the errors made by the students are an
indicative proxy to track the writing competence evolution, especially in the transition
from the first to the second year. In a similar fashion, we observed that the classifier
is sensitive to changes affecting morpho—syntactic features, especially those related to
the use of grammatical categories and to the inflectional properties of verbs: the latter
were also found to change in a significant way when comparing the whole subcorpus
of essays written in the first and in the second year. This gives additional evidence
that mastering verbal morphology in a morphologically-rich language like Italian is
an important skill that evolves in writing during the considered school years. This is
also in line with the [Weiss and Meurers, 2019] study on German cross-sectional data,
which showed that features belonging to morphological complexity play an important
role especially in the development of secondary school writing. However, unlike [Weiss
and Meurers, 2019] and [Kerz et al., 2020], our analysis showed that features related to
lexical sophistication do not seem to be particularly relevant for identifying the evolution
of writing competence.

Lastly, we presented a pilot study in which we try to explore the relationships between
the developmental patterns in writing and information about students background vari-
ables. The obtained results suggested that the student’s learning curve varies according
to the geographical area where the school is located. In fact, we saw that, when a higher
temporal span is considered (e.g. Two years distance), the classifier is more confident
about its decision for essays written by students who belong to suburban schools. Al-
though preliminary, these results go in the direction of what suggested in [Barbagli,
2016], namely that the evolution of writing skills is strictly related to the socio-cultural
context inferred from background variables, and that these aspects affect the linguistic
entry level of the students.

In our second study, we demonstrated that our stylometric approach can be also
applied in the contest of L1 learners. In fact, we demonstrated that it is possible to
automatically predict the relative order of two essays written by the same student at
different course levels using our set of linguistic features, especially when considering
students enrolled in beginner-level Spanish courses. Moreover, we have shown that the
linguistic features most important in predicting essay order often reflect the explicit
instruction that students receive during each course.

These works can help instructors and language researchers better understand the
specific linguistic factors which contribute to improved writing proficiency. Addition-
ally, the appearance of features in the LinearSVM ranking helps clarify the effect of
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instruction on writing performance, specifically on effects such as the known delay
between students being taught a concept and that concept appearing in the students’
writing. We also believe that this work may contribute to the development of better
language assessment and placement tools. Moreover, future works works could build
upon these findings and investigate more in-depth the influence of student L.1 on feature
rankings, as L1 (and L2) transfer and interference effects may influence the rate at which
students acquire specific linguistic features. Additionally, a possible direction would
be to conduct cross-lingual experiments, investigating how the feature rankings of e.g.
Spanish writing development relate to those seen in the acquisition of other languages.

To conclude, we would like to draw attention to some other perspectives that the
presented studies could enable, which are especially relevant in the field of NLP-
based educational applications. Finding theoretically motivated methods to monitor
the learning growth of each student can support the assessment process by teachers,
which could be a very demanding task in distance learning paradigms. Similarly, we
believe that the new educational framework poses new challenges concerning students’
engagement in virtual classes. As shown by [Slater et al., 2017], a variety of linguistic
features identified by NLP tools can be used as reliable predictors of affective states
experienced by students, such as boredom, confusion, frustration, engaged concentration.
With this respect, it would be interesting to explore potential correlations between the
motivation and level of engagement shown by students and the linguistic properties
turned out to be involved in modeling language learning.

Last but not least, the proposed approach can promote comparative studies on the
evolution of the written language competence from a cross-linguistic perspective. In
fact, one of the main novelties of the proposed approach is that the linguistic features
used as predictors of language learning were extracted from corpora annotated according
to the Universal Dependencies (UD) framework. Since this annotation is inspired to
‘universal’ principles aiming at annotating in a consistent way similar constructions
across languages, the process of feature extraction can be applicable to other learner
corpora for all languages included in the UD project.
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CHAPTER

Testing for Linguistic Competence

As we mentioned in Chapter 1, starting from the hypothesis that NLP methods developed
to study the process of written language evolution could be used to interpret the linguistic
knowledge encoded by NLMs, we exploit several approaches to investigate the implicit
knowledge encoded by these models and how this knowledge is affected (and employed)
after a fine-tuning process. In particular, in this chapter we focus on the the studies we
have conducted on the basis of the so-called probing classifier paradigm, with the aim
of understanding which are linguistic properties that are implicitly learned within the
internal representations of Transformer-based models.

8.1 Introduction

Approaches based on probing classifiers have become one of the most prominent method-
ologies for interpreting and analyzing deep neural network models of NLP. As showed in
Chapter 4, the approach is quite simple (a classifier is trained to predict some linguistic
property from a model’s representations) and has been used to investigate a variety of
models and language phenomena. In this section we will focus on the experiments we
devised to test the linguistic competence of several NLMs relying on a wide range of
probing tasks. In particular, we adopted an approach inspired to the ‘linguistic profil-
ing’ methodology put forth by [van Halteren, 2004], which assumes that wide counts
of linguistic features automatically extracted from parsed corpora allow modeling a
specific language variety and detecting how it changes with respect to other varieties,
e.g. complex vs simple language, female vs male—authored texts, texts written in the
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same L2 language by authors with different L1 languages. Particularly relevant for our
study, is that multi-level linguistic features, as we already showed in the experiments
of Chapters 5 and 6, have been shown to have a highly predictive role in tracking the
evolution of learners’ linguistic competence across time and developmental levels, both
in first and second language acquisition scenarios [Lubetich and Sagae, 2014, Miaschi
et al., 2020b]. Given the strong informative power of these features to encode a variety
of language phenomena across stages of acquisition, we assume that they can be also
helpful to dig into the issues of interpretability of NLMs.

The rest of the section is organized as follows. Sec. 8.2 discusses a study aimed at
investigating the linguistic knowledge implicitly encoded by BERT internal representa-
tions before and after a fine-tuning process and how this knowledge affects its ability
on a downstream task. We then focus on an in-depth study aimed at understanding the
linguistic competence encoded in a contextual (BERT) and a contextual-independent
(word2vec) model in Sec. 8.3. Sec. 8.4 investigates the relationship between linguis-
tic knowledge encoded by BERT and the number of individual units involved in the
encoding of such knowledge. Sec. 8.5 presents a comparison between the probing
performances of 7 Italian NLMs over multiple linguistic feature categories and accord-
ing to different architectures of probing models and textual genres. Finally, Sec. 8.6
introduces a methodology to test the reliability of probing tasks by building control tasks
at increasing level of complexity for an Italian Transformer model.

8.2 Linguistic Profiling of a Neural Language Model

In this study, we extended prior work by studying the linguistic properties encoded by one
of the most prominent NLM, BERT [Devlin et al., 2019], and how these properties affect
its predictions when solving a specific downstream task. We defined three research
questions aimed at understanding: (i) what kind of linguistic properties are already
encoded in a pre-trained version of BERT and where across its 12 layers; (ii) how the
knowledge of these properties is modified after a fine-tuning process; (iii) whether this
implicit knowledge affects the ability of the model to solve a specific downstream task, i.e.
Native Language Identification (NLI). To tackle the first two questions, we adopted the
’linguistic profiling’ methodology defined above. In particular, we investigated whether
the features successfully exploited to model the evolution of language competence can
be similarly helpful in profiling how the implicit linguistic knowledge of a NLM changes
across layers and before and after tuning on a specific downstream task. We chose the
NLI task, i.e. the task of automatically classifying the L1 of a writer based on his/her
language production in a learned language [Malmasi et al., 2017]. As shown by [Cimino
et al., 2018], linguistic features play a very important role when NLI is tackled as a
sentence—classification task rather than as a traditional document—classification task.
This is the reason why we considered the sentence-level NLI classification as a task
particularly suitable for probing the NLM linguistic knowledge. Finally, we investigated
whether and which linguistic information encoded by BERT is involved in discriminating
the sentences correctly or incorrectly classified by the fine-tuned models. To this end, we
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tried to understand if the linguistic knowledge that the model has of a sentence affects
the ability to solve a specific downstream task involving that sentence.
The contributions of this work are as follows:

» we carried out an in-depth linguistic profiling of BERT’s internal representations;

» we showed that contextualized representations tend to lose their precision in encod-
ing a wide range of linguistic properties after a fine-tuning process;

» we showed that the linguistic knowledge stored in the contextualized representa-
tions of BERT positively affects its ability to solve NLI downstream tasks: the
more BERT stores information about these features, the higher will be its capacity
of predicting the correct label.

8.2.1 Our Approach

To probe the linguistic knowledge encoded by BERT and understand how it affects its
predictions in several classification problems, we relied on a suite of 68 probing tasks,
each of which corresponds to a distinct feature capturing lexical, morpho—syntactic and
syntactic properties of a sentence. Specifically, we defined three sets of experiments.
The first consisted in probing the linguistic information learned by a pre-trained version
of BERT (BERT-base, cased) using gold sentences annotated according to the Universal
Dependencies (UD) framework [Nivre et al., 2016]. In particular, we defined a probing
model that uses BERT contextual representations for each sentence of the dataset and
predicts the actual value of a given linguistic feature across the internal layers. The
second set of experiments consisted in investigating variations in the encoded linguistic
information between the pre-trained model and 10 different fine-tuned ones obtained
training BERT on as many Native Language Identification (NLI) binary tasks. To do so,
we performed again all probing tasks using the 10 fine-tuned models. For the last set of
experiments, we investigated how the linguistic competence contained in the models
affects the ability of BERT to solve the NLI downstream tasks.

Data We used two datasets: (i) the UD English treebank (version 2.4) for probing the
linguistic information learned before and after a fine-tuning process; (ii) a dataset used
for the NLI task, which is exploited both for fine-tuning BERT on the downstream
task and for reproducing the probing tasks in the third set of experiments. The UD
dataset includes three UD English treebanks: UD_English-ParTUT, a conversion of a
multilingual parallel treebank consisting of a variety of text genres, including talks, legal
texts and Wikipedia articles [Sanguinetti and Bosco, 2015a]; the Universal Dependencies
version annotation from the GUM corpus [Zeldes, 2017]; the English Web Treebank
(EWT), a gold standard universal dependencies corpus for English [Silveira et al., 2014].
Overall, the final dataset consists of 23,943 sentences.

As regards the second dataset, we used the 2017 NLI shared task dataset, i.e. the
TOEFLI11 corpus [Blanchard et al., 2013]. It contains test responses from 13,200 test
takers (one essay and one spoken response transcription per test taker) and includes 11

79



Chapter 8. Testing for Linguistic Competence

Level of Annotation  Linguistic Feature Label
Raw Text Properties (RawText)
Raw Text Sentence Length sent_length
Word Length char_per_tok
Vocabulary Vocabulary Richness (Vocabulary)
Type/Token Ratio for words and lemmas ttr_form, ttr_lemma
Morphosyntactic information (POS)
Distibution of UD and language—specific POS upos_dist_*, xpos_dist_*
POS tagging Lexical density lexical_density
Inflectional morphology (VerbInflection)
Inflectional morphology of lexical verbs and auxiliaries xpos_VB-VBD-VBP-VBZ, aux_*
Verbal Predicate Structure (VerbPredicate)
Distribution of verbal heads and verbal roots verbal_head_dist, verbal_root_perc
Verb arity and distribution of verbs by arity avg_verb_edges, verbal_arity_*
Global and Local Parsed Tree Structures (TreeStructure)
Depth of the whole syntactic tree parse_depth
Average length of dependency links and of the longest link avg_links_len, max_links_len
Average length of prepositional chains and distribution by depth avg_prep_chain_len, prep_dist_*
. Clause length avg_token_per_clause
Dependency Parsing . Order of elements (Order) . :
Relative order of subject and object subj_pre, obj_post
Syntactic Relations (SyntacticDep)
Distribution of dependency relations dep_dist_*
Use of Subordination (Subord)
Distribution of subordinate and principal clauses principal_prop_dist, subordinate_prop_dist
Average length of subordination chains and distribution by depth avg_subord_chain_len, subordinate_dist_1
Relative order of subordinate clauses subordinate_post

Table 8.1: Linguistic Features used in the probing tasks.

native languages (L1s) with 1,200 test takers per L1. We selected only written essays
and we created pairwise subsets of essays written by Italian L1 native speakers and
essays for all the other languages. At the end of this process, we obtained 10 datasets of
2,400 documents (33,756 sentences in average): 1,200 for the Italian L1 speakers and
1,200 for each of the other L1s included in the TOEFL11 corpus.

Probing Tasks and Linguistic Features Our experiments are based on the probing tasks
approach defined in [Conneau et al., 2018], which aims to capture linguistic information
from the representations learned by a NLM. In our study, each probing task consists
in predicting the value of a specific linguistic feature automatically extracted from the
parsed sentences in the NLI and UD datasets. The set of features is based on the ones
described in [Brunato et al., 2020] and already tested for the experiments described
in Chapters 5 and 6. As shown in Table 8.1, the considered features are intended to
probe whether the NLMs encode in their representations 9 main aspects of the structure
of a sentence. They range from quite simple aspects related to the knowledge of raw
text properties (i.e. sentence and word length), to the vocabulary richness (in terms of
type/token ratio), to morpho-syntactic and inflectional properties specific in particular
of verbal predicates. More challenging probing features concerns the NLMs ability to
encode complex aspects of sentence structure, including both global structure, such as
the depth of the whole syntactic tree, and local features. We paid a specific attention to
testing the models knowledge of the sub-trees of the nuclear elements of a sentence. In
this respect we included a group of features modelling the verbal predicate structure,
e.g. in terms of number of dependents of verbal heads, and a group referring to the
order of subjects and objects with respect to their verbal head. In line with the focus
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Level BERT Baseline
Raw text 0.68 0.52
Vocabulary 0.78 0.23
POS 0.68 0.27
Verb inflection 0.72 0.35
Verb predicate 0.60 0.48
Tree structure 0.78 0.70
Order 0.72 0.51
Syntactic dep 0.69 0.34
Subordination 0.71 0.48
All features 0.69 0.38

Table 8.2: BERT p scores (average between layers) for all the linguistic features (AllFeatures) and for
the 9 groups corresponding to different linguistic phenomena. Baseline scores are also reported.

on specific sub-trees, we also considered a group of features capturing the use of
subordination in terms of the distribution of subordinate clauses, of the internal structure
of the subordinate clause sub—trees and of their relative order with respect to the main
clause.

Models We relied on the pre—trained English version of BERT (BERT-base cased, 12
layers, 768 hidden units) for both the extraction of contextual embeddings and the fine-
tuning process for the NLI downstream task. To obtain the embeddings representations
for our sentence-level tasks we used for each of its 12 layers the activation of the first
input token (/CLS]), which somehow summarizes the information from the actual tokens,
as suggested in [Jawahar et al., 2019].

As mentioned above, each of our probing tasks consists in predicting the actual
value of a given linguistic feature given the inner sentence representations learned by
a NLM for each of its layers. Therefore, we used a linear Support Vector Regression
(LinearSVR) as probing model.

8.2.2 Profiling BERT

Our first experiments investigated what kind of linguistic phenomena are encoded in a
pre-trained version of BERT. To this end, for each of the 12 layers of the model (from
input layer -/2 to output layer -7), we firstly represented each sentence in the UD dataset
using the corresponding sentence embeddings according to the criterion defined in Sec.
8.2.1. We then performed for each sentence representation our set of 68 probing tasks
using the LinearSVR model. Since most of our probing features are strongly correlated
with sentence length, we compared the probing model results with the ones obtained
with a baseline computed by measuring the Spearman’s rank correlation coefficient
(p) between the length of the UD dataset sentences and the corresponding probing
values. The evaluation is performed with a 5-fold cross validation and using Spearman
correlation (p) between predicted and gold labels as evaluation metric. Since the majority
of probing experiments are based on classification tasks with a limited number of classes,
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Figure 8.1: BERT average layerwise p scores.

we decided to rely on such metrics in our regression tasks since our interest was to check
whether the model is able to capture the main differences and variations between the
values assumed by our set of linguistic features.

As a first analysis, we probed BERT’s linguistic competence with respect to the
9 groups of probing features. Table 8.2 reports BERT (average between layers) and
baseline scores for all the linguistic features and for the 9 groups corresponding to
different linguistic phenomena. As a general remark, we can notice that the scores
obtained by BERT’s internal representations always outperform the ones obtained with
the correlation baseline. For both BERT and the baseline, the best results are obtained
for groups including features highly sensitive to sentence length. For instance, this
is the case of syntactic features capturing global aspects of sentence structure (Tree
structure). However, differently from the baseline, the abstract representations of BERT
are also very good at predicting features related to other linguistic information such as
morpho-syntactic (POS, Verb inflection) and syntactic one, e.g. the structure of verbal
predicate and the order of nuclear sentence elements (Order).

We then focused on how BERT’s linguistic competence changes across layers. These
results are reported in Figure 8.1, where we see that the average layerwise p scores
are lower in the last layers both for all distinct groups and for all features together. As
suggested by [Liu et al., 2019a], this could be due to the fact that the representations that
are better-suited for language modeling (output layer) are also those that exhibit worse
probing task performance, indicating that Transformer layers trade off between encoding
general and probed features. However, there are differences between the considered
groups: competences about raw texts features (RawText) and the distribution of POS
are lost in the very first layers (by layer -10), while the knowledge about the order of
subject/object with respect to the verb, the use of subordination, as well as features
related to verbal predicate structure is acquired in the middle layers.

Interestingly, if we consider how the knowledge of each feature changes across layers
(Figure 8.2), we observe that not all features belonging to the same group have an
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Figure 8.2: Layerwise p scores for the 68 linguistic features. Absolute baseline scores are reported in
column B.

homogeneous behaviour. This is for example the case of the two features included in the
RawText group: word length (char_per_tok) achieves quite lower scores across all layers
with respect to the sent_length feature. Similarly, the knowledge about POS differs when
we consider more granular distinctions. For instance, within the broad categories of
verbs and nouns, worse predictions are obtained by sub—specific classes of verbs based
on tense, person and mood features (see especially past participle, xpos_dist_VBN),
and by inflected nouns both singular and plural (_NN, _NNS). Within the broad set
of features extracted from syntactic annotation, we also see that different scores are
reported for features referring e.g. to types of dependency relations: those linking a
functional POS to its head (e.g. dep_dist_case, dep_dist_cc, dep_dist_conj, dep_dist_det)
are better predicted than others relations, such as dep_dist_amod, advcl. Besides,
within the VerbPredicate group, lower p scores are obtained by features encoding sub-
categorization information about verbal predicates, such as the distribution of verbs by
arity (verbal_arity_2,3,4), which also remains almost stable across layers.

Since we observed these not homogeneous scores within the groups we defined a
priori, we investigated how BERT hierarchically encodes across layers all the features.
To this end, we clustered the 68 linguistic characteristics according to layerwise probing
results: specifically, we performed hierarchical clustering using Euclidean distance as
distance metric and Ward variance minimization as clustering method. Interestingly
enough, Figure 8.3 shows that the traditional division of features with respect to the
linguistic annotation levels has not been maintained. On the contrary, BERT puts
together features from all linguistic groups into clusters of different size. In addition,
these clusters gather features that are differently ranked according to the baseline scores
(ranking positions are bolded in the figure). For example, the first cluster includes
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Figure 8.3: Hierarchical clustering of the 68 probing tasks based on layerwise p values. Bold numbers
correspond to the ranking of each probing feature based on the correlation with sentence length.

KOR TEL HIN JPN CHI TUR ARA GER FRE SPA
Baseline 59.05 5132 5409 5627 5568 5566 5292 5929 56.03 52.61
BERT 8574 85.18 84.75 84.19 8278 79.29 7638 7278 72.50 70.03

Table 8.3: NLI classification results in terms of accuracy. We used the Zero Rule algorithm as baseline.
Note that, for each task, sentences of the 10 languages are paired with the Italian ones (e.g. KOR =
KOR-ITA).

features with similar p scores, and both highly and lower ranked by the baseline. All
these features model aspects of global sentence structure, e.g. sent_length, functional
POSs (e.g. upos_dist_DET, _ADP, _CCONJ), parsed tree structures (e.g. parse_depth,
verbal_heads_dist, avg_links_len), nuclear elements of the sentence such as subjects
(dep_dist_nsubj), verbs (_VERBS), pronouns (_PRON). This behaviour seem to partially
contradict the results observed by [Tenney et al., 2019a], where it was shown that BERT
represents the steps of the traditional NLP pipeline in an interpretable and localizable
way. In contrast, our results show that using a more granular set of linguistic features
actually makes it much more difficult to identify well-defined patterns and regularities
among the implicit competences learned by the model.

8.2.3 The Impact of Fine-Tuning on Linguistic Knowledge

Once we have probed the linguistic knowledge encoded by BERT across its layers, we
investigated how it changes after a fine-tuning process. To do so, we started with the
same pre-trained version of the model used in the previous experiment and performed a
fine-tuning process for each of the 10 subsets built from the original NLI corpus (Sec.
8.2.1). We decided to use 50% of each NLI subset for training (40% and 10% for
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Figure 8.4: Layerwise mean p scores for the pre-trained and fine-tuned models.

training and development set) and the remaining 50% for testing the accuracy of the
newly generated models. Table 8.3 reports the results for the 10 binary NLI tasks. As we
can notice, BERT achieves good results for all downstream tasks, meaning that is able
to discriminate the L1 of a native speaker on a sentence-level regardless of the L1 pairs
taken into account. The best performance is achieved by the model that was fine-tuned
on the Korean and Italian pairwise subset, while the lowest scores are obtained with
the model trained on the subset consisting of essays written by Spanish and Italian L1
speakers (SPA-ITA). Interestingly, these results seem to reflect typological distances
among L1 pairs, with higher scores for languages that are more distant from Italian
(Korean, Telugu or Hindi) and lower scores for L.1s belonging to the same language
family (FRE-ITA or SPA-ITA).

After fine-tuning the model on NLI, we performed again the suite of probing tasks on
the UD dataset using the 10 newly generated models and following the same approach
discussed in Section 8.3.2. Figure 8.4 reports layerwise mean p correlation values for
all probing tasks obtained with BERT-base and the other fine-tuned models. It can
be noticed that the representations learned by the NLM tend to lose their precision in
encoding our set of linguistic features after the fine-tuning process. This is particularly
noticeable at higher layers and it possibly suggests that the model is storing task—specific
information at the expense of its ability to encode general knowledge about the language.
Again, this is particularly evident for the models fine—tuned on the classification of
language pairs belonging to the same family, SPA-ITA above all. To study which
phenomena are mainly involved in this loss, we computed the differences between the
probing tasks results obtained before and after the fine-tuning process. We focused in
particular on the scores obtained on the output layer representations (layer -7), since it is
the most task-specific [Kovaleva et al., 2019]. For each subset, Figure 8.5 reports the
difference between the score of each linguistic feature obtained with the pre—trained
model and the fine—tuned one. Not surprisingly, the loss of linguistic knowledge reflects
the typological trend observed for overall classification performance. In fact, when the
task is to distinguish Italian vs German, French and Spanish L1, BERT loses much
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Figure 8.5: Differences between BERT-base and fine—tuned models p scores (multiplied by 100) computed
using the output layer representations (-1). Statistically significant variations (Wilcoxon Rank-sum
test) are marked (*).

of its encoded knowledge for almost all the considered features. This is particularly
evident for the morpho-syntactic features (i.e. distribution of upos_dist and xpos_dist)
and for features related to lexical variety (i.e. ttr_form, ttr_lemma). It seems that for
typologically similar languages BERT needs more task-specific knowledge mostly
encoded at the level of morpho-syntactic information rather than the structural level. On
the contrary, the drop is less pronounced and in most cases not significant for models
fine—tuned on the classification of more distant languages (e.g. models fine—tuned
on KOR-ITA or TUR-ITA). In this case, the quite stable performance on the probing
tasks may suggest that those features were still useful to perform the downstream task.
Interestingly, the class of features that decreases significantly in all models are those
encoding the knowledge about the tense of verbs. This is particularly the case of the
third-person singular verbs in the present tense (xpos_dist_VBZ) and of verbs in the past
tense (xpos_dist_VBD). A possible explanation could be related to the prompts of essays,
which are the same across the NLI dataset. Thus, the textual genre could have favored
a quite homogeneous use of verbal morphology features by students of all L1s. This
makes this class of features less useful for the identification of native languages.

8.2.4 Are Linguistic Features useful for BERT’s predictions?

As a last research question we investigated whether the implicit linguistic knowledge
affects BERT’s predictions when solving the NLI downstream task. To answer this
question we have split each NLI subset into two groups, i.e. sentences correctly classified
according to the L1 and those incorrectly classified. For the two groups of each NLI
subset, we performed the probing tasks using the pre—trained BERT-base and the specific
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Figure 8.6: % of probing features for which the MSE of the sentences correctly classified by BERT-base
(Pre-train) and the fine-tuned models (Fine-tune) is lower than that of the incorrectly ones. Results
are reported for layers -12, -7 and -1.

NLI fine-tuned model. For each sentence of the two groups, we calculated the variation
between the actual and predicted feature value obtaining two lists of absolute errors.
We used the Wilcoxon Rank-sum test to verify whether the two lists were selected
from samples with the same distribution. As a general remark, we observed that much
more than half of features vary in a statistically significant way between correctly and
incorrectly classified sentences. This suggests that BERT’s linguistic competence on the
two groups of sentences is very different. To deepen the analysis of this difference, we
calculated the accuracy achieved by BERT in terms of Mean Square Error (MSE) only
for the set of features varying in a significant way. Figure 8.6 reports the percentage
of features for which the MSE of the sentences correctly classified (MSE Pos) is lower
than that of the incorrectly ones (MSE Neg). This percentage is significantly higher,
thus showing that BERT’s capacity to encode different kind of linguistic information
could have an influence on its predictions: the more BERT stores readable linguistic
information into the representations it creates, the higher will be its capacity of predicting
the correct L1. Moreover, we noticed that this is true also (and especially) using the
pre-trained model. In other words, this result suggests that the evaluation of the linguistic
knowledge encoded in a pre—trained version of BERT on a specific input sequence could
be an insightful indicator of its ability in analyzing that sentence with respect to a
downstream task.

Since this behavior might be simply due to the complexity of the sentences rather
than the model itself, to investigate more in depth this phenomenon we analyze the
average length of corrected and incorrected classified sentences. Interestingly, we notice
the correct ones are much more longer than the others for all tasks (from 3 tokens more
for SPA-ITA to 9 for TEL-ITA). This is quite expected for the NLI task, since a higher
number of linguistic events possibly occurring in longer sentences are needed to classify
the L1 of a sentence [Dell’Orletta et al., 2014]. At the same time, longer sentences make
more complex the probing tasks because the output space is larger for almost all them.
This is an additional evidence that BERT’s linguistic knowledge is not strictly related
to sentence complexity, but rather to the model’s ability to solve a specific downstream
task. To confirm this hypothesis and verify whether such tendency does not only depend
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on sentence length, we trained another LinearSVR that takes as input the sentence
length and predict our probing tasks according to correctly or incorrectly classified NLI
sentences. Table 8.4 reports the average Spearman’s correlation coefficients between
gold and predict probing features for the two classes of sentences. Results showed that,
for all the considered language pairs, the LinearSVR achieved higher accuracy for the
probing tasks computed with respect to the incorrectly NLI classified sentences. This is
an additional evidence that deeper linguistic knowledge is needed for BERT to correctly
classify the L1 of a sentences.

Model ARA CHI TUR SPA GER FRE JPN KOR TEL HIN
Correct 0226 0.225 0236 0.223 0215 0224 0.276 0239 0234 0.229
Incorrect 0.248 0.251 0.249 0.235 0.244 0.239 0.290 0.255 0.258 0.257

Table 8.4: Average p scores for sentences correctly and incorrectly classified using only sentence length
as input feature.

8.3 Contextual and Non-Contextual Word Embeddings: an in-depth Lin-
guistic Investigation

After investigating the linguistic competence implicitly encoded by BERT within its in-
ternal representations and how it changes following a fine-tuning process, we decided to
apply our methodology to study differences and similarities with the knowledge encoded
by a contextual-independent LM. In fact, despite several works provided evidences
that recent NLMs are able to encode a wide range of linguistic phenomena, less study
focused on the analysis and the comparison of contextual and non-contextual NLMs
according to their ability to encode implicit linguistic properties in their representations.

In this study we performed a large number of probing experiments to analyze and
compare the implicit knowledge stored by a contextual and a non-contextual model
within their inner representations. In particular, we define two research questions, aimed
at understanding: (i) which is the best method for representing BERT or word2vec
[Mikolov et al., 2013] word representations into sentence embeddings and how each
model and sentence representation approach differently encodes properties related to
the linguistic structure of a sentence; (ii) whether such sentence-level knowledge is
preserved within BERT single-word representations. To answer our questions, we relied
on a the same methodology and set of probing features used in Section 8.2.

The contributions are as follows:

* we perform an in-depth study aimed at understanding the linguistic knowledge
encoded in a contextual (BERT) and a contextual-independent (word2vec) Neural
Language Model;

* we evaluate the best method for obtaining sentence-level representations from
BERT and word2vec according to a wide spectrum of probing tasks;
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* we compare the results obtained by BERT and word2vec according to the different
combining methods;

» we study whether BERT is able to encode sentence-level properties within its single
word representations.

8.3.1 Our Approach

We studied how layer-wise internal representations of BERT encode a wide spectrum
of linguistic properties and how such implicit knowledge differs from that learned by a
context-independent model such as word2vec. Following the probing task approach and
the suite of 68 probing features defined in Sec. 8.2, we defined two sets of experiments.
The first consists in evaluating which is the best method for generating sentence-level
embeddings using BERT and word2vec single-word representations. In particular, we
performed the probing experiments using as input layer-wise BERT and word2vec
combined representations for each sentence of the English UD dataset and we compared
the results to understand which model performs better according to different levels of
linguistic sophistication.

In the second set of experiments, we measured how many sentence-level properties
are encoded in single-word representations. To do so, we performed our set of probing
tasks using the embeddings extracted from both BERT and word2vec individual tokens.
In particular, we considered the word representations corresponding to the first, last and
two internal tokens for each sentence of the UD dataset.

Experimental Setting We relied on a pre-trained English version of BERT (BERT-base
uncased, 12 layers) for the extraction of the contextual word embeddings. To obtain the
representations for our sentence-level tasks we experimented four different combining
methods: Max-pooling, Min-pooling, Mean and Sum. Each of this four combining
methods returns a single 5 vector, such that each s,, is obtained by combining the n'"
components Wi, Way, ..., Wy, of the embedding of each word in the input sentence. In
order to conduct a comparison of context-based and word-based representations when
solving our set of probing tasks, we performed all the probing experiments using also
the embeddings extracted from a pre-trained version of word2vec. In particular, we
trained the model on the English Wikipedia dataset (dump of March 2020), resulting in
300-dimensional vectors. In the same manner as BERT’s contextual representations, we
experimented four combining methods: Max-pooling, Min-pooling, Mean and Sum. We
used a linear Support Vector Regression model (LinearSVR) as probing model.

In order to perform the probing experiments on gold annotated sentences, we relied
on the UD English dataset.

8.3.2 Evaluating Sentence Representations

The first set of experiments consists in evaluating which is the best method for combining
word-level embeddings into sentence representations in order to understand what kind
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Categories BERT word2vec Baseline
Raw text 0.65 0.51 0.37
Morphosyntax ~ 0.49 0.57 0.28
Syntax 0.55 0.56 0.44
All features 0.53 0.56 0.38

Table 8.5: BERT (average between layers) and word2vec p scores computed by averaging Max-, Min-,
Mean and Sum scores according to the three linguistic levels of annotations and considering all the
probing features (All features). Baseline scores are also reported.

Categories Sum Min Max Mean
Raw text 056 0.51 0.51 046
Morphosyntax  0.59 052 0.54 0.61
Syntax 0.61 055 055 054

All features 0.60 054 055 057

Table 8.6: word2vec probing scores obtained with the four sentence combining methods.

of implicit linguistic properties are encoded within both contextual and non-contextual
representations using different combining methods. To do so, we firstly extracted from
each sentence in the UD dataset the corresponding word embeddings using the output
of the internal representations of word2vec and BERT layers (from input layer -/2 to
output layer -7). Secondly, we computed the sentence-representations according to
the different combining strategies defined in 8.5.1. We then performed our set of 68
probing tasks using the LinearSVR model for each sentence representation. Since the
majority of our probing features is correlated to sentence length, we compared probing
results with the ones obtained with a baseline computed by measuring the p coefficient
between the length of the UD sentences and each of the 68 probing features. Evaluation
was performed with a 5-cross fold validation and using Spearman correlation score (p)
between predicted and gold labels as evaluation metric.

Table 8.11 report average p scores aggregating all probing results (All features) and
according to raw text (Raw fext), morphosyntactic (Morphosyntax) and syntactic (Syntax)
levels of annotations. Scores are computed by averaging Max-, Min-pooling, Mean
and Sum results. As a general remark, we notice that the scores obtained by word2vec
and BERT’s internal representations outperforms the ones obtained with the correlation
baseline, thus showing that both models are capable of implicitly encoding a wide
spectrum of linguistic phenomena. Interestingly, we can notice that word2vec sentence
representations outperform BERT ones when considering all the probing features in
average.

We report in Table 8.6 and Figure 10.9 the probing scores obtained by the two models.
For what concerns word2vec representations, we notice that the Sum method prove to
be the best one for encoding raw text and syntactic features, while morophosyntactic
properties are better represented averaging all the word embeddings (Mean). In general,
best results are obtained with probing tasks related to morphosyntactic and syntactic
features, like the distribution of POS (e.g. upos_dist_PRON, upos_dist_VERB) or the
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Figure 8.7: Layerwise p scores for the three categories of raw-text, morphosyntactic and syntactic
features. Layerwise average results are also reported. Each line in the four plots corresponds to a
different aggregating strategy.

maximum depth of the syntactic tree (parse_depth). If we look instead at the average p
scores obtained with BERT layerwise representations (Figure 10.9), we observe that,
differently from word2vec, best results are the ones related to raw-text features, such as
sentence length or Type/Token Ratio. The Mean method prove to be the best one for
almost all the probing tasks, achieving highest scores in the first five layers. The only
exceptions mainly concern some of the linguistic features related to syntactic properties,
e.g. the average length of dependency links (avg_links_len) or the maximum depth of
the syntactic tree (parse_depth), for which best scores across layers are obtained with
the Sum strategy. The Max- and Min-pooling methods, instead, show a similar trend for
almost all the probing features.

In order to investigate more in depth how the linguistic knowledge encoded by BERT
across its layers differs from that learned by word2vec, we report in Table 8.7 average
p differences between the two models according to the four combining strategies. As
a general remark, we can notice that, regardless of the aggregation strategy taken into
account, BERT and word2vec sentence representations achieve quite similar results on
average. Hence, although BERT is capable of understanding the full context of each
word in an input sequence, the amount of linguistic knowledge implicitly encoded in its
aggregated sentence representations is still comparable to that which can be achieved
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Layers Mean Max-pooling Min-pooling Sum

-12 .052 -.058 -.038 -.091
-11 .065 -.055 -.038 -.084
-10 .063 -.053 -.043  -.088
-9 058 -.044 -.036 -.089
-8 .066 -.039 -.034 -.088
-7 .058 -.046 -.033  -.088
-6 051 -.048 -.045  -.094
-5 .046 -.035 -.032  -.096
-4 .042 -.043 -.025 -.102
-3 .026 -.049 -.041 -.113
-2 .006 -.057 -.045 -.119
-1 -.007 -.069 -.063  -.128

Table 8.7: Average p differences between BERT and word2vec probing results according to the four
embedding-aggregation strategies.

with a non-contextual language model.

In Figure 8.8 we report instead the differences between BERT and word2vec scores
for all the 68 probing features (ordered by correlation with sentence length). For the
comparison, we used the representations obtained with the Mean combining method. As
a first remark, we notice that there is a clear distinction in terms of p scores between
features better predicted by BERT and word2vec. In fact, features most related to
syntactic properties (left heatmap) are those for which BERT results are generally higher
with respect to those obtained with word2vec. This result demonstrates that BERT,
unlike a non-contextual language model as word2vec, is able to encode information
within its representations that involves the entire input sequence, thus making more
simple to solve probing tasks that refer to syntatic characteristics.

Focusing instead on the right heatmap, we observe that word2vec non-contextual
representations are still capable of encoding a wide spectrum of linguistic properties
with higher p values compared to BERT ones, especially if we consider scores closer to
BERT’s output layers (from -4 to -1). This is particularly evident for morphosyntactic
features related to the distribution of POS categories (xpos_dist_*, upos_dist_*), most
likely because non-contextual representations tend to encode properties related to single
tokens rather than syntactic relations between them.

8.3.3 Evaluating Word Representations

Once we have probed the linguistic knowledge encoded by BERT and word2vec using
different strategies for computing sentence embeddings, we investigated how much
information about the structure of a sentence is encoded within single-word contextual
representations. For doing so, we performed our sentence-level probing tasks using
a single BERT word embedding for each sentence in the UD dataset. We tested four
different words, corresponding to the first, the last and two internal tokens for each
sentence in the UD dataset. In particular, we extracted the embeddings from the output
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Figure 8.8: Differences between BERT and word2vec scores (multiplied by 100) for all the 68 probing
features (ranked by correlation with sentence length), obtained with the Mean aggregation strategy.
BERT scores are reported for all the 12 layers. Positive (red) and negative (blue) cells correspond to
scores for which BERT outperforms word2vec and vice versa.

layer (-7) and from the layer that achieved best results in the previous experiments (-8).
We used probing scores obtained with word2vec embeddings for the same tokens as
baseline. In Table 8.8 we report average p scores obtained by BERT (BERT-*) and
word2vec (word2vec-*) according to word-level representations extracted from the four
tokens mentioned above. Results were computed aggregating all probing results (All)
and according to raw text (Raw), morphosyntactic (Morphosyntax) and syntatic (Syntax)
levels of annotation. For comparison, we also report average scores obtained with BERT
[CLS] token.

As a first remark, we can clearly notice that even with a single-word embedding
BERT is able to encode a wide spectrum of sentence-level linguistic properties. This
result allows us to highlight the main potential of contextual representations, i.e. the
capability of capturing linguistic phenomena that refer to the entire input sequence
within single-word representations. An interesting observation is that, except for the raw
text features, for which the best scores are achieved using [CLS], higher performance
are obtained with the embeddings corresponding to BERT-4, i.e. the last token of each
sentence. This result seems to indicate that [CLS]/, although being used for classification
predictions, does not necessarily correspond to the most linguistically informative token
within each input sequence.

Comparing the results with those achieved using word2vec word embeddings, we
notice that BERT scores greatly outperform word2vec for all the probing tasks. This is a
straightforward result and can be easily explained by the fact that the lack of contextual
knowledge does not allow single-word representations to encode information that are
related to the structure of the whole sentence.
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Embeddings Raw Morphoyntax Syntax All

BERT-1(-8) 0.62 0.57 0.55 0.57
BERT-2 (-8) 0.59 0.53 0.53 0.53
BERT-3(-8) 0.59 0.52 0.52 0.53
BERT-4 (-8) 0.65 0.66 0.62 0.64
BERT-1(-1) 0.55 0.55 0.51 0.53
BERT-2 (-1) 0.54 0.1 0.49 0.50
BERT-3 (-1) 0.54 0.51 0.49 0.50
BERT-4 (-1) 0.59 0.57 0.53 0.55
[CLS] (-8) 0.66 0.47 0.52 0.51
[CLS] (-1) 0.61 045 0.49 0.48
word2vec-1 0.26 0.26 0.22 0.24
word2vec-2 0.17 0.21 0.18 0.19
word2vec-3 0.17 0.19 0.17 0.18
word2vec-4 0.13 0.15 0.12 0.13

Table 8.8: Average p scores obtained by BERT and word2vec according to word representations corre-
sponding to the first, the last and two internal tokens of each input sentence. Results are computed
according to the three linguistic levels of annotation and considering all the probing features (All).
Average scores obtained with the [CLS] token are also reported.

Since the latter results demonstrated that BERT is capable of encoding many sentence-
level properties within its single word representations, as a last analysis, we decided to
compare these results with the ones obtained using sentence embeddings. In particular,
Figure 8.9 reports probing scores obtained by BERT single word (tok_*) and Mean
sentence representations (sent) extracted from the output layer (-/) and from the layer
that achieved best results in average (-8).

As already mentioned, for many of these probing tasks, word embeddings perfor-
mance is comparable to that obtained with the aggregated sentence representations.
Nevertheless, there are several cases in which the difference between performance is
particularly significant. Interestingly, we can notice that aggregated sentence representa-
tions are generally better for predicting properties belonging to the left heatmap, i.e. to
the group of features more related to syntactic properties. This is particularly noticeable
for the average number of tokens per clause (avg_token_per_clause) or the distribution
of subordinate chains by length (subord_dist), for which we observe an improvement
from word-level to sentence-level representations of more than .10 p points. On the
contrary, probing features belonging to the right heatmap, therefore more close to raw
text and morphosyntactic properties, are generally better predicted using single word
embeddings, especially when considering the inner representations corresponding to
the last token in each sentence (fok_4). The property most affected by the difference in
scores between word- and sentence-level embeddings is the the distribution of periods
(xpos_dist_.).

Focusing instead on differences in performance between the two considered layers,
we can notice that regardless of the method used to predict each feature, the represen-
tations learned by BERT tend to lose their precision in encoding our set of linguistic
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Figure 8.9: Probing scores obtained by BERT word (tok_*) and sentence (mean) representations extracted
from layers -1 and -8. Sentence embeddings are computed using the Mean method.

properties, most likely because the model is storing task-specific information (Masked
Language Modeling task) at the expense of its ability to encode general knowledge
about the language.

8.4 How Do BERT Embeddings Organize Linguistic Knowledge?

Once probed the linguistic competence implicitly encoded by a NLM, another issue
concern the way in which this information is localized within its internal representations.
Relying on the same set of linguistic features exploited in 8.2 and 8.3, we proposed an
in-depth investigation aimed at understating how sentence-level linguistic knowledge
encoded by BERT is arranged within its representations. In particular, we defined two
research questions, aimed at: (i) investigating the relationship between the sentence-
level linguistic knowledge encoded in a pre-trained version of BERT and the number
of individual units involved in the encoding of such knowledge; (ii) understanding how
these sentence-level properties are organized within the internal representations of BERT,
identifying groups of units more relevant for specific linguistic tasks.

8.4.1 Approach

To study how the information used by BERT to implicitly encode linguistic properties is
arranged within its internal representations, we relied on a variable selection approach
based on Lasso regression [Tibshirani, 1996], which aims at keeping as few non-zero
coefficients as possible when solving specific regression tasks. Our aim was to identify
which weights within sentence-level BERT internal representations can be set to zero, in
order to understand the relationship between hidden units and linguistic competence and
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whether the information needed to perform similar linguistic tasks is encoded in similar
positions.

Lasso regression consists in adding an L; penalization to the usual ordinary least
square loss. To do so, one of the most relevant parameters is A, which tunes how relevant
the L, penalization is for the loss function. We performed a grid search with cross
validation for each feature-layer pair, in order to identify the best suited value for A
according to each task. Specifically, our goal was to find the most suited value for
seeking the best performance when having as few non-zero coefficients as possible.

Model and Data We used the same pre-trained BERT model used in the previous experi-
ments and we experimented with both the activation of the first input token (/CLS]) and
the mean of all the word embeddings in a sentence (Mean-pooling).

As regards the probing features, we relied once again on our set of 68 probing features
extracted from each sentence of the English UD treebank.

8.4.2 Linguistic competence and BERT units

As a first analysis, we investigated the relationship between the implicit linguistic
properties encoded in the internal representations of BERT and the number of individual
units involved in the encoding of these properties. Figure 8.10 and 8.11 report layerwise
R? results for all the probing tasks along with the number of non-zero coefficients
obtained with the sentence representations computed with the [CLS] token and the
Mean-pooling strategy respectively. As a first remark, we can notice that the Mean-
pooling method proved to be the best one for almost all the probing features across the
12 layers. Moreover, in line with the results obtained with the previous experiments
performed with the LinearSVR probing model, we noticed that there is high variability
among different tasks, whereas less variation occurs among the model layers. Focusing
instead on the relationship between R? scores and number of non-zero coefficients, we
can notice that although best scores are achieved at lower layers (between layers 12 and
8 for both configurations), the highest number of non-zero coefficients occurs instead
at layers closer to the output. This is particularly evident for the results achieved using
the [CLS] token, for which we observe a continuous increase across the 12 layers in the
number of units used by the the probing models.

For both configurations, features more related to the structure of the whole syntactic
tree are those for which less units were set to zero during regression (e.g. max_links_len,
parse_depth, n_prepositional_chains), while properties belonging to word—based prop-
erties (i.e. features related to POS and dependency labels) were predicted relying on
less units. Moreover, we can clearly notice that features related to specific POS and
dependency relationships are also those that gained less units through the 12 layers (e. g.
xpos_dist_., xpos_dist_AUX). On the contrary, features belonging to the structure of the
syntactic tree tend to acquire more non-zero units as the output layer is approached. This
is particularly evident for the linguistic features predicted using sentence representations
computed using the [CLS] token (e.g. subj_pre, parse_depth, n_prepositional_chains).
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Figure 8.10: Layerwise R? results for all the probing tasks (left heatmap) along with the number of
non-zero coefficients (right heatmap) obtained with the sentence representations computed using the
[CLS] token.

We believe this is due to the fact that the interdependence between different units in
each representation tend to increase across layers, thus making the information less
localized especially for those features that belong to the whole structure of the syntactic
tree. This is coherent with the fact that using the Mean-pooling strategy a higher number
of non-zero coefficients was preserved also in the very first input layers, suggesting that
this strategy increases the interdependence between each unit and makes the extraction
of localized information more complex.

In order to focus more closely on the relationship between R? scores and non-zero
units, we reported in Figure 8.12 average R? scores versus average number of non-zero
coefficients, along with the line of best fit, for each layer and according to the [CLS]
token and to the Mean-pooling strategy respectively. Interestingly, for both [CLS] and
Mean-pooling representations, R? scores tend to improve as the number of non-zero
coefficients increases. Moreover, when considering sentence representations computed
with the [CLS] token, this behaviour becomes more pronounced as the output layer is
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Figure 8.11: Layerwise R? results for all the probing tasks (left heatmap) along with the number of
non-zero coefficients (right heatmap) obtained with the sentence representations computed with the
Mean-pooling strategy.

—— layer_12 best fit R2 is 0.44
layer_11 best fit R2 is 0.36

—— layer_10 best fit R2 is 0.4

70| —— layer_9 best fit R2 is 0.45

—— layer_8 best fit R2is 0.46  *

—— layer_7 best fit R2 is 0.43
layer_6 best fit R2 is 0.38

—— layer_5 best fit R2 is 0.41
layer_4 best fit R2 is 0.4

—— layer_3 best fit R2 is 0.36

s00] — layer_2 best fit R2 is 0.35

—— layer_1 best fit R2is 0.4

00

500

00

00

#coefficients
#coefficients

layer_12 best fit R2 is 0.23
layer_11 best fit R2 is 0.2
layer_10 best fit R2 is 0.2
layer_9 best fit R2 is 0.18
layer_8 best fit R2 is 0.19
layer_7 best fit R2 is 0.22
layer_6 best fit R2 is 0.25
—— layer_5 best fit R2 is 0.25
layer_4 best fit R2 is 0.26
layer_3 best fit R2 is 0.28
—— layer_2 best it R2 is 0.3
layer_1 best fit R2 is 0.35

200 200

00 b— . . . . . “100 - . . . . .
o0 02 0a o5 08 10 o0 02 oa o6 o5 10

Figure 8.12: Average R? scores versus average number of non-zero coefficients, along with the line of
best fit, for each layer and according to [CLS] and Mean-pooling strategy respectively.
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Figure 8.13: Average number of non-zero coefficients in a layer that are set to zero in the following one
(average number of dropped coefficients), average number of zero coefficients in a layer that are set to
non-zero in the following one (average number of gained coefficients) and the value of the difference
between the number of non-zero coefficients at pairs of consecutive layers (average number of changed
coefficients).

reached. This is in line with what we already noticed, namely that the interdependence
between different units tend to increase across layers, especially when taking into
account representations extracted without using a mean-pooling strategy.

In order to investigate more in depth the behaviour of BERT hidden units when
solving the probing tasks, we focused more closely at how the different units in the
internal representations are kept and lost across subsequent layers. Figure 8.13 reports,
respectively, the average number of non-zero coefficients in a layer that are set to zero
in the following one, the average number of zero coefficients in a layer that are set
to non-zero in the following one and the average value of the difference between the
number of non-zero coefficients at pairs of consecutive layers. As it can be observed,
there is high coherence between each layer and its subsequent one, meaning that the
variation in the number of selected coefficient is stable. However, the first two plots also
show that there is a higher variation when considering non-zero coefficients in the same
positions between pairs of layers. This underlines the fact that the information is not
localized within BERT’s internal representations, since the algorithm shows a degree of
freedom in which units can be zeroed and which cannot.

In Figure 8.14 we report instead how many times each individual unit in the [CLS]
and Mean-pooling internal representations has been kept non-zero when solving the
68 probing tasks for all the 12 BERT layers (816 regression task). In general, we can
observe that the regression tasks performed using sentence-level representations obtained
with the Mean-pooling strategy tend to use more hidden units with respect to the [CLS]
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Figure 8.14: Number of times in which each BERT individual unit (computed with [CLS] and with Mean-
pooing aggregation strategy respectively) has been kept as non-zero when solving all the probing tasks
for all the 12 layers.

ones. It is also interesting to notice that there is a highly irregular unit (number 308) that
has been kept different from zero in a number of tasks and layers much higher than the
average. This could suggest that this unit is particularly relevant for encoding almost all
the linguistic properties devised in our probing tasks.

8.4.3 Is information linguistically arranged within BERT representations?

Once we have investigated the relationship between the linguistic knowledge implicitly
encoded by BERT and the number of individual units involved in it, we verified whether
we can identify groups of units particularly relevant for specific probing tasks. To this
end, we clustered the 68 probing features according to the weights assigned by the
regression models to each BERT hidden unit. Specifically, we perform hierarchical
clustering using correlation distance as distance metric. Figure 8.15 and 8.16 report the
hierarchical clustering obtained with the [CLS] and Mean-pooling internal representa-
tions at layers 12, 8 and 1. We chose layers 12 and 1 in order to study differences of
the clustering of linguistic features taking into account the representations that were
more distant and more closer to the language modeling task respectively, while layer 8
was chosen since it was the layer after which BERT’s representations tend to lose their
precision in encoding our set of linguistic properties.

As a general remark, we can notice that, despite some variations, the linguistic
features are organized in a similar manner across the tree layers and for both the configu-
ration. This is to say that, despite the number of non-zero coefficients varies significantly
between layers and according to the strategy for extracting the internal representations,
the way in which linguistic properties are arranged within BERT embeddings is quite
consistent. This suggests that there is a coherent organization of linguistic features
according to non-zero coefficients that is independent from the layer and the aggregation
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Hierarchical clustering of coef in layer 12 setting CLS
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use of punctuation (xpos_dist_., xpos_dist_,, dep_dist_punct) and subordination (e.g.

dist_VBN aux

, subordinate_post). Interestingly enough, BERT representations

also tend to put together features related to each other but not necessarily belonging

From top to bottom, the hierarchical clustering for the [CLS] setting of all the tasks
, XpOs

dist_VBD

Focusing on specific groups of features, we observe that, even if the traditional

division with respect to the linguistic annotation levels (see Table 8.1) has not been
completely maintained, it is possible to identify different clusters of features referable

to the same linguistic phenomena for all the 3 layers taken into account and for both
configurations. In particular, we can clearly observe groups of features related to the

respectively at layers 12, 8 and 1.
related to verbal predicate structure and inflectional morphology of auxiliaries (e.g.

length of dependency links and prepositional chains (e.g. max_links_len, avg_links_len,

n_prepositional_chains), to vocabulary richness (ttr_form,

techniques taken into account.

Figure 8.15
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Italian Transformers Under the L

respectively at layers 12, 8 and 1.
non-English models. Starting from this premise, we decided to apply our methodology

in Chapter 4, relatively little work has been done to understand the inner working of
in order to carry out an in-depth investigation of the linguistic knowledge implicitly
encoded by 6 Italian monolingual models and multilingual BERT. Besides the focus on
Italian, which represents a scarcely considered language in the scenario of the NLM
interpretation studies, a further novelty of our approach the comparative analysis of

While the vast majority of the works aimed at understanding the linguistic competence of
NLMs have focused on models trained on the English language, as we already discussed

to the same linguistic macro-category. This is the case, for instance, of characteristics

corresponding to functional properties (e.g. upos

Figure 8.16
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8.5. ltalian Transformers Under the Lingusitic Lens

how and to which extent the different architectures on which the probing model rely on
influence the probing accuracy. To address this point, for each Transformer, we perform
the same suite of probing tasks using both a LinearSVR and a multilayer perceptron
(MLP), and compare whether and how each probing task’s resolution is affected by the
two architectures. Since all experiments were carried out on different sections of Italian
Universal Dependency Treebank [Nivre et al., 2016], we were also able to investigate
how linguistic knowledge of NLMs varies according to different textual genres and
language varieties.

To the best of our knowledge, this is the first study aimed at comparing the lin-
guistic knowledge encoded in the representations of multiple non-English pre-trained
transformer models. In particular:

* we compared the probing performances of 6 Italian NLMs and a multilingual one
spanning three models over multiple linguistic feature categories;

* we investigated whether and how using different architectures of probing models
affects the performance of transformers in encoding specific features;

* we showed how the implicit knowledge learned by these models differs across
textual genres and language varieties.

8.5.1 Approach

To inspect the inner knowledge encoded by Italian Transformers, we relied on a suite of
82 probing tasks and we tested our approach testing two different probing architectures:
a LinearSVR and a three-layer feedforward network with ReLLU activations (Multi-layer
perceptron, MLP). If the linear architecture is the most commonly used approach to
infer information inside NLMs, the MLP was selected to investigate the presence of
nonlinear relations in representations, which could hamper the probing performance
of the LinearSVR probe. Regardless of the architecture, the two probing models take
as input layer-wise sentence-level representations extracted from the Italian models.
These representations are produced for each sentence of different sections of the Italian
Universal Dependency Treebank (IUDT), version 2.5 [Zeman et al., 2019], and used
to predict the actual value of each probing feature. Starting from the results obtained
we performed three complementary investigations. In the first one we compared the
results obtained by the two probing architectures according to different groups of
probing tasks. Then, we move to compare the linguistic competence of the 7 Italian
Transformers. Finally, the impact of the considered linguistic varieties on the NLMs
linguistic generalization abilities is discussed.

Models and Data

We relied on 7 pre-trained Italian models based on three different Transformers architec-
tures: BERT [Devlin et al., 2019], RoBERTa [Liu et al., 2019b] and GPT-2 [Radford
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Chapter 8. Testing for Linguistic Competence

Table 8.9: NLMs used in the experiments.

Name Training data

BERT Architecture
Multilingual-BERT Wikipedia
BERT-base-italian Wikipedia + OPUS (13GB)
AIBERTo TWITA (191GB)

RoBERTa Architecture

GilBERTo OSCAR (71GB)
UmBERTo-Commoncrawl OSCAR (69GB)
UmBERTo-Wikipedia Wikipedia (7GB)

GPT-2 Architecture
GePpeTto Wikipedia + tWAC (14GB)

et al., 2019]. In particular, we investigated the linguistic competence of: three BERT-
based models, Multilingual-BERT, BERT-base-italian' and AIBERTo [Polignano et al.,
2019], trained respectively on Wikipedia (102 languages), Italian Wikipedia + texts from
the OPUS corpus [Tiedemann and Nygaard, 2004] and TWITA [Basile et al., 2018]; three
RoBERTa-based models, GilBERTo? and two versions of UmBERT0?, trained respec-
tively on OSCAR [Suidrez et al., 2019] (GilBERTo and UmBERTo-Commoncrawl) and
Italian Wikipedia (UmBERTo-Wikipedia); a GPT-2 based model, GePpeTto [De Mattei
et al., 2020], trained on Italian Wikipedia + ItWAC [Baroni et al., 2009]. Models statis-
tics are reported in Table 8.9. Sentence level representations were computed performing
a Mean-pooling operation over the word embeddings provided by the models.

NLM’s linguistic competences are probed against 5 sections of the Italian treebank
representative of different language varieties and textual genres, as shown in Table 8.10.
The considered sections can be categorised in two main groups: a first one that includes
sentences acquired from documents of diverse nature, ranging from Wikipedia pages, to
newspaper articles, novels, speech transcriptions, etc., and a second group collecting
examples of the social media language, in particular of Twitter. In the first group
we included the Italian version of the multilingual Turin University Parallel Treebank
(ParTUT) [Sanguinetti and Bosco, 2015b], the Venice Italian Treebank (VIT) [Delmonte
et al., 2007] and Italian Stanford Dependency Treebank (ISDT) [Bosco et al., 2013],
which we considered representative of the standard Italian language. The group of
treebanks composed of POSTWITA [Sanguinetti et al., 2018] and TWITTIRO [Cignarella
et al., 2019] was originally built to enhance the performances of systems in processing
social media texts, and in particular, for irony detection purposes. Being representative of
a non-standard variety of the Italian language, for our specific scopes, they are intended
to be a quite challenging testbed for probing the linguistic knowledge of NLMs also
when they are trained on standard language variety.

Note that the linguistic abilities of the 7 NLMs were also tested against a number of

Thttps://github.com/dbmdz/berts
Zhttps://github.com/idb-ita/GiIBERTo
3https://github.com/musixmatchresearch/umberto
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Table 8.10: Sections of the Italian Universal Dependency Treebank (IUDT).

Short Name Types of texts # sent
ParTUT Multi-genre 2,090
VIT Multi-genre 10,087
ISDT Multi-genre 14,167
ISDT_tanl Newswire 4,043
ISDT_tut Legal/Newswire/Wiki 3,802
ISDT_quest Interrogative sentences 2,162

ISDT_2parole  Simplified Italian news 1,421
ISDT_europarl  EU Parliament debates 497

PoSTWITA Tweets 6,713
TWITTIRO Ironic Tweets 1,424
Total 35,481

sub-portions of the largest Italian UD treebank, i.e. ISDT. They have been chosen since
they are representative of language sub-varieties possibly infrequently seen during the
NLMs training phase. Accordingly, they can be conceived as a favorite point of view to
investigate whether general-purpose NLMs encode less standard linguistic phenomena.
For this purpose, in addition to sub-sections including newspapers (ISDT _tanl) and
miscellaneous documents (ISDT_tut), we considered sub-portions including sentences
in interrogative form (ISDT_quest), newspaper articles specifically written to be linguis-
tically simple (ISDT_2parole) and transcriptions of the European parlament oral debates
(ISDT_europarl).

The linguistic features used for testing the linguistic knowledge of Italian Trasformers
are, once again, based on the ones described in [Brunato et al., 2020] and extracted from
the sentences of the IUDT treebank. Specifically, for the experiments we relied on a
subset of 83 features, that can be grouped in the 9 macro-groups earlier discussed.

8.5.2 Experiments and Results

In this section we report the results of the three different investigations we carried out
starting from the probing strategies devised.

Comparison of Probing Model Architectures Our first analysis concerns the comparison of
the two considered architectures for probing the linguistic knowledge encoded by the
Italian Transformers. Since many of our probing features are strongly related to sentence
length, we compared these results with the ones obtained by a baseline corresponding
to a LinearSVR model trained using only sentence length as input feature. Table 8.11
reports average (layer-wise) R? results* for all the 7 NLMs obtained with the LinearSVR
and the MLP probing architectures, along with baseline scores.

As a first remark, we notice that both probing architectures outperform the baseline.
This suggests that all NLMs encode a spectrum of phenomena that, although related

4The Coefficient of determination (R?) is a statistical measure of how close the data are to the fitted regression line and
corresponds to the proportion of the variance in the dependent variable that is predictable from the independent variable(s).
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Table 8.11: Average R? scores for all the NLMs obtained with the LinearSVR and the MLP probing
models. Baseline scores are also reported.

Groups LinearSVR MLP Baseline
RawText 0.84 0.80 0.50
Vocabulary 0.70 0.34 0.19
POS 0.69 0.68 0.03
Verblnflection 0.50 0.61 0.03
VerbPredicate 0.32 0.43 0.08
TreeStructure 0.61 0.64 0.40
Order 0.46 0.55 0.06
SyntacticDep 0.65 0.74 0.04
Subord 0.49 0.60 0.16
AllFeatures 0.60 0.64 0.10

to sentence length, require a more sophisticated linguistic knowledge to be accurately
predicted. However, if we compare the results achieved by the two architectures on
all groups of linguistic phenomena (AllFeatures), we can see that MLP architecture
achieves higher R? scores. This is specifically the case of the group of features which
refer to distribution of syntactic dependency relations (SyntacticDep) and to complex
aspects of sentence structure (TreeStructure). On the contrary, if we compare the ranking
of the linguistic phenomena ordered by decreasing scores, we can see that for both
architectures raw text properties and the distribution of morpho-syntactic categories
(POS) appear in the first positions, while the order of subject and object (Order) and the
structure of verbal predicates (VerbPredicate) are ranked in the lower part of the ranking.
Interestingly enough, the LinearSVR architecture outperforms the MLP by more than
.30 R? points when predicting features related to vocabulary richness (Vocabulary).

In order to ensure that our probes are actually showing the linguistic generalization
abilities of the NLMs rather than learning the linguistic tasks, we also tested the probing
models using the control task approach devised in [Hewitt and Liang, 2019]. We
produced a control version of the IUDT corpus by randomly shuffling the linguistic
features assigned to each sentence and performed the same probing tasks with the two
probing classifiers for all NLMs representations. The correlation and R? scores between
regressors’ predictions and shuffled scores were low (< 0.05) and comparable for both
the SVR and the MLP. These results support the claim that NLMs representations encode
information closely related to linguistic competence and that our probing models are not
relying on spurious signals unrelated to our linguistic properties to solve the regression
task.

Comparison of Italian Transformers To investigate to which extent each transformer en-
codes the considered set of linguistic phenomena, we compared the performances
achieved by the 7 NLMs, using the two probing architectures. Results are reported in
Figure 8.17 where we can notice that the 7 transformers achieve quite similar results
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Figure 8.17: Average (layer-wise) R? scores obtained by each NLM with the two probing models.

when considering all features as a whole. Nevertheless, a more in depth analysis high-
lights a number of small differences. Namely, we can see that BERT-base-italian and
GePpeTto are among the first three best models, while AIBERTo is among the two
models resulting less able to encode the sentence linguistic properties. If this can be
observed for both the probing architectures, a main difference concerns the performances
achieved by the UmBERTo model trained on the Italian Wikipedia: it is the second best
model using the MLP architecture while it represents the last one with the SVR probing
architecture.
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Figure 8.18: Average layerwise R? scores obtained with the LinearSVR (top) and the MLP (bottom)
using the internal representations of the 7 NLMs.

However, this trend does not hold when we analyse the NLMs performances with
respect to the encoding of the different groups of linguistic phenomena. For instance, we
can notice that, for both the probing architectures, tree structure properties (TreeStruc-
ture) are predicted more accurately by RoOBERTa-style models, i.e. by GilBERTo and
UmBERTo-Commoncrawl, than by models based on BERT or GPT-2. This can be
similarly observed for the prediction of two other linguistic properties referring to
sub-trees of the whole syntactic structure of a sentence. Namely, it can be seen that
GilBERTo and UmBERTo-Commoncrawl] are the two best models able to encode the use
of subordination (Subord) and the verb predicate structures (VerbPredicate). However,
this holds only if we consider the MLP probing architecture. Further differences in
terms of probing architectures can be inspected considering NLMs abilities to encode
competencies related to vocabulary richness (Vocabulary): while UmBERTo-Wikipedia
extensively outperforms all the other transformers using the MLP model, the best trans-
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former is BERT-base-italian when these competences are probed with the LinearSVR
model.

Additional observations can be made if we move to the analysis of how NLMs
prediction abilities change and evolve across layers. As it can be seen in Figure 8.18,
regardless of the architecture, for all transformers linguistic competences tend to decrease
across the 12 layers. This is in line with previous findings [Liu et al., 2019a, Miaschi
et al., 2020a] and it could be due to the fact that transformer layers trade off between
task-oriented (e.g. Masked Language Modeling) information and general linguistic
competence. Such decreasing trend can be specifically observed for example for the
ability to predict raw text features, or the distribution of the UD morpho-syntactic
categories (POS) and syntactic dependencies (SyntacticDep): they represent sentence
properties mainly encoded in the first layers by all NLMs. On the contrary, we can
observe that there is a number of more complex linguistic features whose knowledge
increases consistently across layers, even if it decreases in the output layer. This is
the case of features referring to structural sentence knowledge, such as the order of
subject/object with respect to the verbal head (Order) and the use of subordination
(Subord). In addition, contrarily to what was observed by [de Vries et al., 2020],
Mulilingual-BERT’s linguistic knowledge is not encoded systematically earlier than in
monolingual transformers.

This perspective of analysis also reveals other differences among the considered
transformers which were unseen. By inspecting the trend of the R? scores across layers,
we can for example see that even though GePpeTto has a lower average competence on
verb inflection (see Figure 8.17), it achieves the highest scores in the middle layers. Or,
even if we previously noted that RoOBERTa-style transformers are more able to predict
features related to the structure of a sentence (TreeStructure), the highest accuracy is
achieved by a BERT-style model, i.e. BERT-base-italian, in the -4 layer. A similar
observation also concerns the use of subordination and the verb predicate structure:
the two group of features are in general predicted more accurately by GilBERTo and
UmBERTo-Commoncrawl but the highest R? scores are achieved by Mulilingual-BERT
and BERT-base-italian in the -5 and -4 layers.

Focusing instead on differences between layerwise scores obtained by the two probing
architectures, we can clearly notice that the encoding of linguistic knowledge shows a
quite rough trend for what concerns the results obtained with the MLP. This is particularly
the case of features belonging to the vocabulary, POS and tree structure groups.

If we deepen our investigation and we focus on the linguistic generalization ability
of the NLMs with respect to each individual feature (see Figure 8.19), we can clearly
observe that the rankings according to R? scores are quite similar regardless the probing
architecture and the transformer model. It is also interesting to note that, despite some
deviations, the distinction into macro-groups of linguistic phenomena seems to be
preserved across the rankings. In fact, raw-text features, as well as the distributions of
POS-tags (upos_dist_*, xpos_dist_*) and dependency relations (dep_dist_*), are those
that were better predicted by the two probing models, while features more related to
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Figure 8.19: Average R? scores obtained for each probing features using the two probing architectures
tested with the internal representations of the 7 NLMs. Both heatmaps are ordered on the basis of the
feature ranking as predicted by the AIBERTo model using the LinearSVR architecture.
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the structural information of a sentence, such as the order of elements (e.g. subj_pre,
subj_post and obj_post) or the structure of parsed tree (e.g. avg_token_per_clause,
avg_prep_chain_len) achieved lower probing scores. Worse predictions are also related
to morphological features of both lexical and auxiliary verbs, namely for example their
mood (verb_mood_¥*) or tense (verb_tense_*). Taking a closer look at the differences
between the 7 NLMs, we can see that in few cases the linguistic competence of the
AIBERTo model is significantly different (lower) from that of the other models. The
most remarkable case concerns the distribution of punctuation marks in general, both
at the level of morpho-syntactic category (upos_dist PUNCT) and of dependency
relation (dep_dist_punct), as well as the distribution of commas (xpos_dist_FF) and
balanced punctuation (xpos_dist_FB). This appears particularly evident using MLP as
probing architecture and it is possibly related to the typology of texts the AIBERTo
model was trained on, i.e. Twitter. It is well known that social media represents a
not standard language variety, characterised by specific linguistic properties mostly
different from ordinary language [Farzindar and Inkpen, 2015], such as short sentences
where punctuation marks, especially weak ones, are rarely used. Accordingly, the low
frequency of punctuation in the training corpus possibly yields AIBERTo’s reduced
generalization abilities with respect to this specific set of features.

Comparison of Italian Language Varieties Our last analysis concerns the impact of the
considered Italian language varieties on NLMs linguistic abilities. For this purpose,
we inspected whether the overall linguistic competence encoded in the contextual
representations of each model changes according to the different IUDT sections. The
results reported in Figure 8.20 show that all transformers, regardless of the probing
architecture, achieve lower performance when they have to predict the value of features
extracted from treebanks representative of social media language (PoOSTWITA and
TWITTIRO) and from the sub-set of ISDT sentences in interrogative form (ISDT_quest).
In both cases, this seems supporting our starting intuition that NLMs trained on standard
language varieties, represented for example by Wikipedia pages, websites or web-
crawled documents, may be less robust to non-standard varieties that were possibly
unseen, or rarely seen, during the pre-training process. Quite surprisingly, even if
AIBERTo has been trained on Twitter data, it obtains the lowest R? scores also when its
internal representations are used to predict the feature values of the two social media
Italian treebanks. A possible explanation is that, although POSTWITA and TWITTIRO
contain sentences representative of Twitter language, these sentences are still quite close
to the Italian standard language, in order to be compliant with the UD morpho-syntactic
and syntactic annotation schema. On the contrary, AIBERT0’s training set is derived
from Twitter’s official streaming API that included all possible typologies of sentences.

It also worth noting that BERT-base italian and GePpeTto are the two models slightly
less affected by the non-standard linguistic peculiarities of the social media variety.
As noted in Section 8.5.2, they represent the two best performing models in terms
of overall linguistic competence. This may explain why they are more robust in the
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Figure 8.20: Average LinearSVM R? score considering all the UD Italian sentences (all) and according
to the 10 treebanks previously described.

accurate prediction of the features values of all the considered IUDT sub-sections. This
holds both with the LinearSVR and MLP probing architecture, even if in the latter case
the two versions of UmBERTo achieve comparable or slightly better scores. A main
exception is represented by the ISDT sub-section including sentences in interrogative
form (ISDT_quest), which, as we noted above, are hardly mastered by all models.
This is possible due to the fact that interrogative sentences are more likely to display a
less canonical distribution of morpho-syntactic and syntactic phenomena, hence being
more difficult to encode effectively. In this case, the transformer based on GPT-2, i.e.
GePpeTto, results to be the NLM with the highest linguistic knowledge of this type of
sentences.
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Table 8.12: Spearman correlations between rankings of features as predicted by the 7 NLMs on four
sections of the IUDT treebank: IUDT 2parole (2par), IUDT_tanl (tanl), IUDT_quest (quest) and
IUDT postwita (ptw). Highest correlations are bolded, while lowest ones are marked in italics.

Li R MLP
Model Section inearSV
2par tanl quest ptw 2parole tanl quest ptw
2par 1 1
alberto tanl 72 1 85 1
quest 38 .38 1 .62 .56 1
ptw 76 .82 45 1 5 .80 .58 1
2par 1 1
tanl .68 1 .82 1
bert-base-itali
er-base-tatian quest 34 41 1 62 47 1
ptw 72091 A7 1 5 .88 47 1
2par 1 1
" tanl .65 1 .80 1
geppetio quest .30 38 1 64 50 1
ptw 70 .92 48 1 72 .88 47 1
2par 1 1
dberto tanl .61 1 77 1
& quest .30 40 1 58 54 1
ptw .66 .88 46 1 .69 82 49 1
2par 1 1
mbert tanl .65 1 .76 1
quest 30 37 1 .55 47 1
ptw g1 .90 45 1 71 .83 .46 1
2par 1 1
mberto-commoncrawl tanl 58 ! 71 :
4 Y quest 28 33 1 55 471
ptw .69 8 .39 1 .65 .75 .35 1
2par 1 1
tanl 57 1 .70 1
berto-wikipedi
tiberto-witapedia quest - - 1 .50 44 1
ptw .66 .72 .36 1 .69 72 .36 1

A further analysis of the impact of language varieties on the ability of NLMs to
encode the considered group of linguistic phenomena can be appreciated in Table
8.12. It shows, for each probing architecture, the Spearman correlations between the
rankings of features predicted by all NLMs considering three ISDT sub-sections, i.e.
ISDT_tanl, ISDT_2parole and ISDT_quest, and PoOSTWITA, and ordered by decreasing
R? scores. For each NLM, higher correlations correspond to similar linguistic gen-
eralization abilities across the paired treebanks, while lower correlations suggest that
the inner representations of the NLM allow predicting effectively diverse linguistic
features. As we can see, regardless of the probing architecture, for all NLMs, the
highest correlated rankings are those obtained comparing ISDT_tanl and POSTWITA
predicted features. Even if it is quite surprising, this result can be explained assuming
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that the morpho-syntactic and syntactic features of the Twitter sentences contained
in POSTWITA are not so dramatically different from those characterising ISDT_tanl
newspaper articles. In fact, among all the three ISDT sections considered here they
resulted to be the two most similar treebanks with respect to the distribution of the set
of linguistic features reported in Table 8.1. In particular, the main differences concern
the distribution of some morpho-syntactic categories (e.g. punctuation, nouns) and main
features related to the inflectional morphology of verbs, e.g. the distribution of present
tenses, higher in POSTWITA (51.11% out of the total verb tenses) than in ISDT_tanl
(34.95%), or of the past tenses that in the Twitter sentences are less than half than in
the newspaper ones. Interestingly, these characteristics belong to the group of features
that the NLMs are able to master quite accurately, regardless of the language variety.
Even if these differences had a negative impact on the overall probing abilities of the
PoSTWITA sentence characteristics, as shown in Figure 8.20, the higher knowledge of
these specific features did not possibly have a great consequence on the ranking of the
predicted features, thus yielding quite high correlations.

On the contrary, the lowest correlations can be observed when we compare the
rankings obtained for the pairs of treebanks containing the set of sentences in the in-
terrogative form, i.e. ISDT_quest. Even if the correlation values are slightly higher
using MLP, this trend holds for the two probing architectures and for all NLMs. Note
that the correlations between the ranking obtained with UmBERTo-Wikipedia for the
pairs ISDT_quest/ISDT_2parole and ISDT_quest/ISDT_tanl are even not statistically
significant. Let us remind that this is the NLM that achieved the lowest prediction
accuracy using the LinearSVR probing architecture (see Figure 8.17). Our intuition is
that this may have made it less robust in the prediction of non-standard linguistic forms,
such as interrogative sentences. Similarly to what aforementioned, these results can
be explained if we analyse the feature values in the considered treebanks. ISDT_quest
resulted to be quite different from all the other treebanks particularly with respect to
complex aspects of sentence structure. For example, the canonical order of the nuclear
elements of a sentence (i.e. subject and object) is largely subverted in sentences in the
interrogative form. Thus, they contain a very high percentage of post-verbal explicit sub-
jects (68.69% of the total), half an order of magnitude higher than ISDT _tanl (15.21%)
and PoOSTWITA (12.63%) and an order of magnitude higher than ISDT_2parole (7.55%).
Sentences in the interrogative form also have a lower percentage of post-verbal objects
(17.31%), which instead represent the majority of cases in other treebanks, and they are
characterised by a very low distribution of subordinate clauses in general and in particu-
lar of subordinates following the principal clause, i.e. 4% vs. 43% in ISDT _tanl, 35.78%
ISDT_2parole and 44.36%. These and other similar features all concern structural
aspects of a sentence that may have undermined the overall NLM linguistic competence
thus yielding not only lower probing scores on ISDT_quest but also different feature
rankings with respect to the other treebanks.
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8.6 Probing Tasks Under Pressure

In Chapter 4 we showed that, despite the emerging amount of work, there are several
open questions concerning the design of probing tasks and that those questions fostered
complementary lines of research. Among these, a number of studies have started to
investigate the effectiveness of the probing paradigm, as in [Ravichander et al., 2021].
Starting from the control tasks approach defined in [Hewitt and Liang, 2019], we
introduced a new approach to put increasingly under pressure the effectiveness of a suite
of probing tasks to test the linguistic knowledge implicitly encoded by BERT [Devlin
etal., 2019]. To achieve this goal, we set up a number of experiments aimed at comparing
the probing results obtained by Italian BERT when predicting 1) our set of linguistic
features extracted from the the Italian Universal Dependency Treebank [Zeman et al.,
2019] 11) a set of linguistic features built from a suite of control datasets we specifically
built for the purpose of this study. We define a control dataset as a set of linguistic
features whose values were automatically altered in order to be increasingly different
from the values in the treebank, referred to as gold values. Our underlying hypothesis
is that if the predictions of the altered values diverge from the predictions of the gold
values, this possibly suggests the effectiveness of probing tasks to test the linguistic
knowledge embedded in BERT representation.

To the best of our knowledge this is the first paper that:

* introduces a methodology to test the reliability of probing tasks by building control
tasks at increasing level of complexity

* puts under pressure the probing approach considering the Italian language.

8.6.1 Methodology

Our methodology seeks to investigate the effectiveness of probing tasks for evaluating
the linguistic competences encoded in NLM representations. To this aim, we trained a
LinearSVR model using BERT sentence representations and then tested its performances
when predicting the values of a set of linguistic features in multiple scenarios. In one
scenario, the model shall predict gold values, thus corresponding to the real values of
the features in the corpus. In the other scenarios, we automatically altered the feature
values at different control levels each corresponding to increasing degrees of pressure
for the probing model.

Our methodology will allow us to test whether the probing model really encodes
linguistic competences or simply learns regularities in the task and data distributions by
checking the results obtained in the different scenarios. If the predictions of the probing
model will be more similar to the gold values than to the automatically altered ones,
then we might assume that the information captured by the probed feature is encoded in
the representations.
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Figure 8.21: 2-dimensional PCA projection of the feature values in the gold and control datasets. All
Swapped datasets overlap with the Gold one.

Models and Data We tested our approach of the base cased Italian BERT developed by
the MDZ Digital Library Team®. For the sentence-level representations, we leveraged
the activation of the first input token [CLS].

Our experiments are carried out on the Italian Universal Dependencies Treebank
(IUDT), containing a total of 35,480 sentences. Due to the IUDT high variability in
terms of sentence length®, we focused on a sub-set of sentences with a £10 tokens
variation with respect to the median sentence length (i.e. 20 tokens). As a result, we
selected 21,991 sentences whose length ranges between 10 and 30 tokens. We chose
to consider only this sub-set since all groups of sentences of the same length included
in this interval are composed by an amount of elements, i.e. 1,000, which makes our
results reliable and comparable across groups of different lengths.

Starting from the set of linguistic features devised in 8.5, we relied on a subset of
77 features, modeling 7 main aspects of the structure of a sentence: morphosyntactic
information, inflectional morphology, verbal predicate structure, global and local parsed
tree structures, relative order of elements, syntactic relations and use of subordination.

Control datasets We created two main types of control datasets, obtained by automati-
cally altering gold feature values. The first main type (hereafter referred to as Swapped)
is built by shuffling the original values of each feature across sentences; while the
second type (Random) contains values randomly generated within the maximum and
the minimum value that each feature shows in the whole gold dataset. Since the values

Shttps://huggingface.co/dbmdz/bert-base-italian-xxI-cased
STUDT contains sentences ranging from 1 to 308 token long.
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of the considered features are strongly related to the length of the sentence, for each
type of control dataset we built two sub-types of datasets. In a first sub-type (Bins), we
grouped sentences falling into the same predefined range of sentence lengths (i.e., 10-15,
15-20, 20-25 and 25-30 tokens). In a second sub-type (Lengths), we included groups of
sentences having exactly the same length.

Note that the different data altering strategies are conceived to represent increasingly
challenging testbeds to assess the effectiveness of our probing tasks. The Swapped
control datasets are the most challenging ones as the swapped feature values might be
quite similar to the gold ones, thus possibly predicted with an high accuracy by the
probing model. Such intuition is confirmed by the results of the 2-dimensional Principal
Component Analysis (PCA) reported in Figure 8.217. As we can see, all the data points
representing the feature values contained in the Swapped datasets fully overlap with the
gold ones, thus confirming their similarity. On the contrary, randomly generated values
are progressively more distant being less plausible, even if the constraints of sentence
length yield values that are closer to the gold ones.

From now on, the values of each feature acquired from IUDT represent the gold
dataset and they have been automatically altered in order to generate additional control
datasets.

8.6.2 Results

For both gold and control datasets, probing scores are computed as a Spearman cor-
relation between the feature values predicted by the probing model and the values
contained in each dataset. Such correlation values are computed by averaging the
NLM’s layer—wise scores as, for all datasets, we observed small differences between the
scores obtained across the 12 layers. We experimentally verified that these differences
were not significant by computing the slope of a linear regression line between BERT
layers and the scores of the gold dataset, obtaining -0.0017 as mean value considering all
features. Our intuition is that the small range of lengths of the sentences here considered
may have yielded such insignificant variation across layers, which turned out to be on
the contrary significant on the whole set of IUDT sentences (see 8.5). Namely, being
highly related to the length of the sentence, the feature values have little variations.

Figure 8.22 shows the scores obtained on the gold and the 6 control datasets, both
for the 7 macro-groups of linguistic features and on average (AVG). Additionally, in
order to properly appreciate the differences between the results obtained on the gold
and control datasets, in Figure 8.23 we report the error reduction rate for each control
dataset computed as the difference between the scores obtained when predicting gold
and altered features.

General Results. We can observe that on average the highest probing scores are obtained
on the gold dataset and that, accordingly, there is a great difference (i.e. almost 1.0, see

7PCA is a classical data analysis method that reduces the dimensionality of the data while retaining most of the variation in the
data set by identifying n principal components, along which the variation of the data is maximal [Jolliffe and Cadima, 2016].
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Figure 8.22: Average probing scores (as Spearman correlation) obtained by the LinearSVR model when
predicting gold and control linguistic features. Results are reported for each feature group and on
average (‘AVG’ column).

Fig. 8.23) between the accuracy of the probing model when predicting the authentic and
altered feature values. This seems suggesting that the model is able to recognize that
the feature values contained in the control datasets have been altered, even when they
are not fully random but plausible, i.e. in the Swapped datasets. As a consequence, we
can hypothesize that the model is relying on some implicit linguistic knowledge when
it predicts the authentic feature values, rather than learning some regularities possibly
found in the dataset.

However, if we take a closer look at the scores obtained for the Random and Swapped
datasets when we constrain the length of the sentences, we can observe that the accuracy
in predicting the feature values contained in the Swapped datasets is sightly higher than
in the Random ones (see ‘AVG’ column in Figure 8.22). This is in line with our starting
hypothesis and shows that feature values artificially created simply by shuffling gold
ones across sentences of the same lengths (or of the same range of lengths) are more
similar to the gold values and thus are predicted with higher accuracy than randomly
altered values. Nevertheless, their error rate, namely the difference from the accuracy of
gold predictions, is still quite high, i.e. about 0.80 (see the ‘AVG’ column, Figure 8.23).

Linguistic Features Analysis. Also when we focus on the results obtained with respect to
the 7 macro-groups of linguistic features, we can observe that the probing model is more
accurate in the prediction of the gold values. Again, the scores on the control datasets
are slightly higher when we constrain the values with respect to sentence length, since
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Figure 8.23: Error reduction rates reporting the difference between the probing scores obtained on the
Gold dataset and each control dataset. Result are reported for each feature group and on average
(‘AVG’ column).
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Dataset Spearman corr.
Random 0.08
Random Bins 0.46 *
Random Lengths 0.33 *
Swapped -0.15
Swapped Bins 0.05
Swapped Lengths 0.06

Table 8.13: Spearman correlations between the rankings of features obtained with the Gold dataset and
the 6 control datasets. Statistically significant correlations are marked with * (p-value < 0.05).

we narrow the range of possible values. In particular, we see that the feature values
related to the sentence tree structure are those predicted most closely to the gold ones
(see column “TreeStructure’, Figure 8.23). Note that these sentence properties are the
most sensitive to the sentence length, that BERT encodes with a very high accuracy.
This may suggest that in the resolution of these tasks the probing model is possibly
relying on some regularities related to sentence length. Similar observations hold for the
results achieved in the resolution of the probing tasks related to the use of subordination,
which heavily depends on sentence length. Interestingly, we can note that the values of
all the other groups of features contained in the control datasets are predicted by the
probing model with a very low accuracy, possibly making the results not significant.
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Gold

Random Bins

Swapped Lengths

dep_dist_root
dep_dist_punct
upos_dist_ PUNCT
xpos_dist_FS
upos_dist_ ADP
dep_dist_det
upos_dist._ PROPN
upos_dist_ DET
xpos_dist_RD

dep_dist_root
avg_max_links_len
max_links_len
xpos_dist_FB
avg_token_per_clause
xpos_dist_FS
n_prep_chains
avg_max_depth
verbal_head_per_sent

dep_dist_root
avg_max_links_len
max_links_len
avg_max_depth
verbal_head_per_sent
xpos_dist_FS
avg_links_len
subord_prop_dist
avg_subord_chain_len

dep_dist_case xpos_dist_RI n_prep_chains

verbal_head_per_sent  dep_dist_cop subord_post

xpos_dist_FF xpos_dist_PC subord_dist_1
xpos_dist_SP dep_dist_conj avg_prep_chain_len
xpos_dist_E xpos_dist_B obj_post

upos_dist_ NOUN xpos_dist_VA avg_verb_edges

Table 8.14: 15 top-ranked Gold and control features (Random Bins and Swapped Lengths) predicted by
BERT sentence-level representations.

Once we showed that the probing tasks accuracy is very different
if the feature values are authentic or altered, in this section we compare the ranking of
linguistic features ordered by decreasing prediction accuracy in the gold and control
scenarios. As we can see in Table 8.13, which reports the Spearman correlations between
the rankings, the control rankings are almost not related to the gold one and the existing
correlations are not statistically significant. The only exceptions are represented by the
rankings of values that were randomly generated with sentence length constraints, which
have a weak and moderate correlation. Note that however, as shown before, the ranked
scores are very low.

Features Correlations.

A more qualitative feature ranking analysis can be carried out by inspecting Table
8.14 where we report the first 15 top-ranked features predicted in the gold and in the
two most highly correlated Swapped and Random datasets. As we can see, the gold
ranking diverges from the rankings of the altered values with respect to the majority
of top-ranked features. The most visible exception is represented by the distribution of
syntactic root that the probing model always predicts with the highest accuracy. The
result is quite expected since this feature can be seen as a proxy of the length of the
sentence, a linguistic property properly encoded by BERT. Similarly, other two features
influenced by sentence length appear, as expected, on the top positions of all rankings,
namely the distribution of the sentence boundary punctuation (xpos_dist_FS) and of
verbal heads (verbal_head_per_highly).

8.7 Discussion

As discussed in Chapter 4, the probing tasks approach is a natural way to estimate the
mutual information shared by a neural network’s parameters and some latent property
that the model could have implicitly learned during training. Although the effectiveness
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and the reliability the approach is still under debate, previous works provided several
insights about the linguistic properties implicitly learned by state-of-the-art NLMs.
Using a suite of probing tasks inspired to the ’linguistic profiling’ methodology [van
Halteren, 2004], in our experiments we showed that pre-trained Transformer-based
models are capable of encoding a wide spectrum of linguistic proprieties of sentence
structure.

Focusing our study on an English pre-trained version of BERT, we showed that this
model is able to encode linguistic phenomena across its 12 layers, but, differently from
previous studies (e.g. [Lin et al., 2019, Tenney et al., 2019a]), we found that the order in
which probing features are stored in the internal representations does not necessarily
reflect the traditional division with respect to the linguistic annotation levels. In line with
previous work (e.g. [Liu et al., 2019a]), we noticed that in the last layers the linguistic
competence encoded by the model tends to decrease, probably because BERT is getting
more specified for the MLM task.

In a follow-up study dedicated to the comparison between a contextual and a non-
contextual NLM, we noticed that word2vec acquire sentence-level linguistic competence
in a similar way to BERT. More specifically, we showed that BERT is able in storing
features that are mainly related to raw text and syntactic properties, while word2vec is
good at predicting morphosyntactic characteristics. Moving instead from sentence-level
to word-level representations, we learned that BERT encodes sentence-level linguistic
phenomena even within single-word embeddings, exhibiting comparable or even superior
performance than those obtained with aggregated sentence representations. Relying
instead on a variable selection approach applied to our set of probing tasks, we showed
the existence of a relationship between the implicit linguistic knowledge encoded by
BERT and the number of individual units involved in the encoding of this knowledge.
Specifically, according to the strategy for obtaining sentence-level representations, the
amount of hidden units devised to encode linguistic properties varies differently across
BERT layers: while the number of non-zero units used in the Mean-pooling strategy
remains more or less constant across layers, the [CLS] representations show a continuous
increase in the number of used coefficients. Moreover, we noticed that this behaviour
is particularly significant for linguistic properties related to the whole structure of the
syntactic tree, while features belonging to POS and dependency tags tend to acquire less
non-zero units across layers.

Another issue in the investigation of the linguistic competence implicitly learned by
NLMs is how this knowledge is modified after a fine-tuning process and how it affects
the decisions they make when solving specific downstream tasks. The results obtained in
our study suggested that BERT tends to lose its precision in encoding the set of probing
features after a fine-tuning process (i.e. Native Language Identification), probably
because it is storing more task—related information for solving NLI. Nevertheless, we
found that the linguistic knowledge implicitly encoded by the model positively affects
its ability to solve the tested downstream tasks: the more it stores readable linguistic
information of a sentence, the higher will be its capacity of predicting the expected label
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assigned to that sentence.

With findings reported in Sec. 8.5 we tried to achieve a deeper understanding of the
linguistic competence learned by Transformer models in a language other than English.
Specifically, presenting an in-depth comparative investigation of the linguistic knowl-
edge encoded in by 7 Italian transformers relying on two different probing architectures,
we first showed experimentally how non-linear architectures such as the multi-layer
perceptron (MLP) capture a broader range of information encoded in learned representa-
tions with respect to their linear counterparts, and as such they can be considered more
suitable for studying highly nonlinear models such as NLM. In this sense, our results
support the information-theoretic operationalization of probing proposed by [Pimentel
et al., 2020a]. However, the rankings of this and of the LinearSVR model in terms of
their probing ability are quite similar. Namely, both are particularly able to probe raw
text properties, as well as the distribution of Parts-Of-Speech and dependency relations;
while they obtained lower scores for features referring to the order of subject and object
with respect their verbal head and to the verbal predicate structure. The following
comparison of the linguistic generalization abilities of the 7 models showed that if we
analyse the results considering all the probing features as a whole few differences can be
observed. More interesting outcomes result when we focus on the embedded knowledge
of each group of linguistic characteristics. We noticed for example that global and local
tree structure properties are predicted more accurately by RoBERTa-style models, i.e.
by GilBERTo and UmBERTo-Commoncrawl, than by models based on BERT or GPT-2.
We obtained additional information when we narrowed our analysis on how NLMs
prediction abilities evolve across models’ layers, showing for example that the highest
competence about the tree structure is achieved by a BERT-style model, i.e. BERT-
base-italian, in the -4 layer. A more in-depth comparison with respect to the ranking of
each individual feature by R? scores also revealed that, even if the 7 Transfomers are
quite similar, a main exception is represented by the AIBERTo model. In particular, it
showed to have reduced generalization abilities concerning the use of punctuation. Our
intuition is that it is possibly related to the typology of texts the AIBERTo model was
trained on, 1.e. Twitter, where punctuation marks are rarely used. Finally, we showed
that the level of NLMs linguistic competence changes according to the diverse linguistic
varieties of [UDT. All Transformers resulted to be less robust in the prediction of the
linguistic properties characterising sentences representative of social media language
and of sentences in the interrogative form. This is possible due to the fact that the two
types of sentences are characterised by non-canonical distribution of morpho-syntactic
and syntactic phenomena, possibly rarely or never seen during the training phase. Sur-
prisingly, also the AIBERTo model, even if it was trained on Twitter data, achieved very
low performances, while on the contrary, BERT-base italian and GePpeTto are the two
models slightly less affected by the non-standard linguistic varieties. Despite both social
media and questions seem representing two quite challenging testbeds, our in-depth
investigation of how each probing feature is ranked by the NLMs allowed highlighting
noteworthy differences. We observed that the most diverse rankings concern the test on
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the sentences in the interrogative form, which result to be characterised by distributions
of structural aspects of sentence very different from other IUDT sections.

Finally, in Sec. 8.6 we described a methodology to test the effectiveness of a suite
of probing tasks for evaluating the linguistic competence encoded by NLMs. To this
aim, we analysed the performances of a probing model trained with Italian BERT
representations to predict the authentic and automatically altered values of a set of
linguistic features derived from IUDT. We observed general higher performances in
the prediction of authentic values, thus suggesting that the probing model relies on
linguistic competences to predict linguistic properties. However, when we constrained
automatically altered values with respect to sentence length, the model tends to learn
surface patterns in the data.
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CHAPTER

Assessing NLMs Linguistic Abilities

In this chapter we discuss the experiments that focused on the relationship between
perplexity scores and grammatical generalization abilities and on the performance of
NLMs on diagnostic tests built to probe their sensitivity to specific language phenomena.

9.1 Introduction

In Chapter 4 we showed that alternative methodologies to the probing tasks approach
have been proposed to analyze the linguistic competence of NLMs. They range from the
analysis of the relationship between perplexity scores and grammatical generalization
abilities [Hu et al., 2020] to the investigation of NLMs performance of diagnostic
datasets built to probe their ability on targeted syntactic phenomena [Warstadt et al.,
2020]. As regards the first approach, in this section we present two complementary
studies. In the first one (Sec. 9.2) we study how the linguistic structure of a sentence
affects the perplexity of a NLM and whether it is possible to predict NLMs perplexity
scores using our set of linguistic features already expolited during the probing tasks
experiments. In the second study (Sec. 9.3), we first investigate the relationship between
NLM perplexity scores and the readability scores assigned to the same sentences by
a supervised readability assessment tool and then we verify whether the two metrics
are equally affected by the same set of linguistic phenomena. Finally, in Sec. 9.4
we introduce new evaluation resource for the Italian language in order to test the
understanding of textual connectives in real-usage sentences by the most recent NLMs.
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9.2 What Makes my Model Perplexed?

In this study, we present an investigation aimed at studying how the linguistic structure
of a sentence affects the perplexity of a NLM. Rather than studying the relation between
the NLM'’s perplexity and its linguistic competences assessed on sentences undergoing
controlled syntactic modifications, we focus on sentences representative of real usage.
Our purpose indeed is to understand which linguistic phenomena of the input sentence
may make perplexed a NLM and whether they can effectively predict the assigned
perplexity score. To have a in-depth understanding of the relation between linguistic
structure and perplexity, we relied on the set of linguistic features we have previously
exploited to probe the competence of these models trough the probing tasks approach.
As we also intend to evaluate the possible influence of the NLM architecture on this
relation, in all our experiments we consider two of the most popular NLMs, a traditional
unidirectional one, i.e. GPT-2, and a bidirectional model such as BERT.
The contributions of this study are as follows:

* we showed that a sentence-level likelihood computed by masking each word
sequentially for the BERT model has a robust correlation with GPT-2’s perplexity
scores;

» we verified whether it is possible to predict NLMs’ perplexities using a wide set of
linguistic features extracted by a sentence;

» we identified the linguistic properties of a sentence that mostly cause perplexity,
reporting differences and similarities between the two models.

9.2.1 Approach

We defined two sets of experiments. The first consists in investigating the relationship
between BERT and GPT-2 sentence-level perplexity (PPL) scores. To do so, we first
computed BERT and GPT-2 PPL scores for sentences contained in the English Universal
Dependencies (UD) treebank [Nivre et al., 2016] and we assessed their correlation. In
the second set of experiments, we studied whether a simple regression model that takes
as input our set of linguistic features automatically extracted from each UD sentence is
able to predict the two NLMs sentence-level perplexities.

To understand which linguistic phenomena contribute to the prediction of BERT and
GPT-2 PPLs, and how these features differ between them, we performed an in-depth
investigation training the regression model with one feature at a time.

Models and Data For our experiments, we rely on the pre-trained version of the two
NLMs previously defined. We first computed GPT-2’s sentence-level perplexities by
dividing the sum of all sub-word conditional log-probabilities by the total number of
words for each sentence in the UD dataset. On the other hand, since BERT masked
language modeling task does not allow to compute well-formed probability distributions
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Lengths pscore # samples

All 0.63 22,505
n=10 0.66 847
n=15 0.60 793
n=20 0.64 643
n=25 0.53 422
n=30 0.54 277

Table 9.1: Spearman correlations between BERT and GPT-2 perplexities computed for all UD sentences
(All) and sentences with fixed-length n.

over sentences, we measure BERT sentence-level likelihood by masking each word
sequentially and computing the probability as follows:

k
p(S) %Hp(wﬂwhmawi—l,wiﬂa---,wk) O.1)
i=1

The perplexity is then computed as follows:

PPLg = %) 9.2)

where N correspond to the length of sentence S. In order to uniform the terminology,
in what follows we will refer to the BERT sentence-level likelihood as perplexity.

In order to evaluate our approach on gold annotated sentences, we relied on the three
English Universal Dependencies (UD) treebanks (ParTUT, GUM corpus and EWT), for
a total of 22,505 sentences, and we extracted a subset 78 linguistic features from those
defined in [Brunato et al., 2020] for each sentence in the dataset.

9.2.2 A Linguistic Investigation on Perplexity

As a first step, we assessed whether there is a relationship between the perplexity of a
traditional NLM and of a masked NLM. We thus calculated BERT and GPT-2 perplexity
scores for each UD sentence and measured the correlation between them. Since PPL
scores are highly affected by the length of the input sequence, we computed p correlation
coefficients also considering groups of sentences with fixed length. Specifically, we
relied on Spearman correlation because we were interested in measuring how the
variations in perplexity scores relate each other, rather than focusing on the actual PPL
values. Results are reported in Table 9.1. As we can notice, even considering samples
with fixed length, the two NLMs’ perplexities exhibit moderate to substantial correlation
(with p < 0.001), thus showing that BERT an GPT-2 do not diverge excessively in their
ability of predicting the likelihood of the input sentences. Moreover, this allows us
to confirm that, although the deep bidirectional structure of BERT does not permit to
compute a well-formed probability distribution over a sentence, this metric could be
considered as a valid approximation of the perplexity computed with a unidirectional
NLM.
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Figure 9.1: BERT and GPT-2 p scores (multiplied by 100) obtained with the LinearSVR model using
linguistic features, for the whole UD dataset and groups of sentences with fixed length.

Once established the correlation between the perplexities of the two NLMs, we
performed a second experiment to investigate (i) if the considered set of linguistic
features plays a role in predicting their perplexity and (ii) which are the features that
contribute more to the prediction task. To do so, we trained a LinearSVR model that
predicts perplexity’s scores using our set of linguistic properties as input features. Since
most of them refer to syntactic properties of sentence that are strongly correlated with its
length, we considered as a baseline a SVR model that takes sentence length as input and
outputs BERT/GPT-2 sentence’s perplexity. Regression results deriving by considering
both the whole set (All) and each of the 9 groups of linguistic features separately are
reported in Figure 9.1. As a general remark, for the whole UD dataset, we can observe
that the results considering both all and the 9 groups of linguistic features outperform the
results obtained by the baseline, i.e. p=0.38 for BERT and 0.22 for GPT-2 respectively.
This demonstrates that the considered features are able to model aspects involved in
NLM’s perplexity that go beyond the simple length of sentence. This is particularly the
case of GPT-2, suggesting that the probability assigned to a sentence by a traditional
NLM is more explainable in terms of linguistic phenomena mainly affecting morpho-
syntactic and syntactic structure. Consequently, the baseline score is higher for BERT. If
we consider the scores obtained for each group of sentences with fixed length, we can see
that higher scores are obtained for groups containing shorter sentences, for both NLMs.
This is quite expected since in these sentences the possible output space is smaller for
almost all features, thus making them more predictive. Also in this case, the impact of
the linguistic features is always higher for the prediction of GPT-2’s perplexity.

A more in-depth analysis of these results shows that the distribution of the morpho-
syntactic characteristics of a sentence (POS) and of the syntactic dependency relations
(SyntacticDep) are the two most predictive sources of linguistic information. As Figure
9.1 reports, this holds for the two NLM models and it remains constant throughout all
the groups of sentences with fixed lengths. Interestingly, if we consider the whole set of
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Sentence length = All Sentence length = 16
lexical_density 0.4 0.38 (1) lexical_density 0.29 0.381(1)
% upos_PRON 0.38 0.35 (2) % upos_PROPN 0.25 0.29 (1)
verbal_heads 0.37 % xpos_NNP 0.25 0.25(6)
% _dep_root 037 0.22 (10) % _dep_compound 0.2 0.21 (7}
sent_length 0.37 0.22 (8) char_per_tok 0.19 0.33 (2)
avg_verb_edges 035 0.22 (9] % upos_PRON 019 0.311(3)
parse_depth 0.34 0.17 (24) % xpos_PRP 0.16 0.26 (5)
max_links_len 032 0.18 (19) % upos_AUX 0.15 0.12 (13)
% _dep_nsubj 0.31 0.22 (11) % dep_mark 0.13 0.16 (8)
char_per_tok 031 0.34(3) verbal_heads 0.13 0.14 (10)
% _subj_pre 03 0.17 (25) % xpos_VB 011 0.14 (12)
dause_length 0.3 UREREYIIN . aux_mood_Ind 0.09
% upos_AUX 03 0.21(12) % dep_punct 0.086
% _verbal_root 0.29 0.18 (18) % upos_PUNCT
% _xpos_PRP 0.29 0.29 (4) % dep_det
avg_links_len 0.28 0.13 (35) % dep_nsubj
9% _aux_form_Fin 0.18 (21) % _dep_advmod 0.077
avg_subord_chain 0.2 (14) % upos_DET 0.077
%_subord_prop 0.18 (17) % _dep_aux 0.074 0.099 (18)
% _upos_VERB 0.18 (22) % _upos_VERB 0.074 0.087 (21)

BERT GPT-2 BERT GPT-2

Figure 9.2: BERT and GPT-2 p scores obtained with the LinearSVR model, for the whole UD dataset
and 16 token-long sentences. Scores are reported for the 20 top-ranked features for BERT. Numbers
in brackets correspond to the relative in the GPT-2 ranking.

sentences, the effect of the morpho-syntactic information on the prediction of GPT-2’s
perplexity is exactly the same of that of the whole set of linguistic features. For some
sentence lengths (15, 20, 30) the scores obtained using only this type of information
outperform even those obtained considering the whole set of features. Note that this last
remark is true also in the prediction of BERT’s perplexity. As expected the other most
predictive group is the one (RawText) that includes the length of sentence.

Focus on the contribution of individual features To investigate more in depth which linguis-
tic phenomena are more involved in the perplexity of the two models, we trained the
LinearSVR model using each individual feature at a time. This was done for both the
whole dataset and the subset of sentences (i.e. 758 sentences) having a length of 16
tokens, which corresponds to the mean sentence length of the UD dataset. A subset
of results is reported in Figure 9.2. As we can see in the left-side of the heatmap,
the two models share many features in the first ten positions, thus showing that the
two NLM architectures are made perplexed by similar linguistic characteristics of a
sentence. In particular, for both of them, the two most predictive features correspond
to the lexical density and the presence of pronouns confirming the highly predictive
power of morpho-syntactic information. They are followed by features related to the
presence of verbs and to their internal structure (i.e. verbal_heads and avg_verb_edges),
and, as it was expected, by the length of the sentence. Despite these similarities, we
can see that the scores obtained by the regression model to predict BERT’s perplexity
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are on average higher than GPT-2’s scores. Considering that we obtained higher scores
using all (or groups of) features in the prediction of GPT-2’ perplexity (see Figure
9.1), this latter result may suggest that the interaction among features is less relevant
in the prediction of BERT’s perplexity. Differences among the two models concern
features that are highly sensitive to sentence length, which result to be more predictive
of BERT’s perplexity. This is the case of syntactic features capturing global and local
aspects of sentence structure, i.e. the depth of the whole syntactic tree (parse_depth),
the maximum length of dependency links (max_links_len) and the length of verbal
clauses (clause_length). Also, the canonical order of nuclear sentence elements such as
pre-verbal subjects contribute more to predict BERT’s than GPT-2’s perplexity. Instead,
the distribution of proper nouns (%_upos_PROPN), in particular in their singular form
(%_xpos_NNP), the length of token (char_per_tok) and vocabulary richness are more
predictive of GPT-2’s perplexity. Although we cannot say from ranking results whether
features highly ranked are positively or negatively correlated with perplexity, we can
hypothesize that knowing the distribution of tokens belonging to open lexical categories
(e.g. proper nouns vs determiners) make the perplexity easier to identify.

The right-side heatmap shows the top-ranked features used to predict the two models
perplexity for sentences 16-token long. As expected, when sentence length is controlled,
the role of other features less related to length becomes predominant. In particular,
morpho-syntactic information is still highly predictive for the two models, with lex-
ical parts-of-speech showing to be relevant not only for GPT-2’s but also of BERT’s
perplexity.

9.3 Is Neural Language Model Perplexity Related to Readability?

Once investigated the relationship between NLMs perplexity scores and linguistic
generalization abilities, we decided to focus on a less investigated perspective, addressing
the connection between perplexity and readability. Since by definition perplexity gives
a good approximation of how well a model recognises an unseen piece of text as a
plausible one, our intuition is that lower model perplexity should be assigned to easy-
to-read sentences, while difficult-to-read ones should obtain higher perplexity. On
the other hand, as we already seen in previous works and in our experiments, state-
of-the-art NLMs trained on huge data have shown to implicitly learn a sophisticated
knowledge of language phenomena, also with respect to complex syntactic properties
of sentences [Tenney et al., 2019a, Jawahar et al., 2019, Miaschi et al., 2020a]. This
could suggest that variations in terms of linguistic complexity, especially when related
to subtle morpho—syntactic and syntactic features of sentence rather than lexical ones,
could not impact on model perplexity to a great extent. This assumption seems to be
confirmed by the results by [Martinc et al., 2021] which, to our knowledge, is the only
one explicitly leveraging unsupervised neural language model predictions in the context
of readability assessment. According to this study, a NLM is even less perplexed by
articles addressed at adults than by documents conceived for a younger readership. From
a relatively different perspective focused on the ability of automatic comprehension
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systems to solve cloze tests, [Benzahra and Yvon, 2019] showed that NLMs performance
is not affected by the level of text complexity.

In order to test the validity of all these hypotheses, we rely on the perplexity score
given by a state-of-the-art NLM for the Italian language to several datasets representative
of different textual genres containing both easy— and complex—to—-read sentences: ideally,
such datasets should emphasise the correlation between perplexity and readability (if
present) since the corpora are explicitly designed to contain both simple and difficult
examples.

The contributions are as follows:

» we investigated if the perplexity of a NLM and the readability score of a set of
sentences show a significant correlation;

» we studied whether the two metrics are equally affected by the same set of linguistic
phenomena that occur in the sentence.

9.3.1 Approach

According to our research questions, we devised a set of experiments to study whether
NLMs perplexity reflects the level of readability of a sentence and which are the linguistic
phenomena mostly involved in each metric. For this purpose, we firstly investigated
whether sentence-level perplexity scores computed with one of the most prominent
NLM model correlate with the scores assigned to the same sentences by a supervised
readability assessment tool. Secondly, we investigated which are the linguistic features
of the considered sentences that correlate in a statistically significant way with the
perplexity and readability score respectively. In order to verify whether correlations hold
across different typology of texts, we tested our approach on five Italian datasets.

Models

Automatic readability (ARA) was assessed using READ-IT [Dell’ Orletta et al., 2011a]
the first readability assessment tool for Italian which combines traditional raw text
features with lexical, morpho-syntactic and syntactic information extracted from au-
tomatically parsed documents. In READ-IT, analysis of readability is modelled as a
binary classification task, based on Support Vector Machines using LIBSVM [Chang
and Lin, 2001]. Training corpora are representative of two classes of texts, i.e. difficult—
vs. easy—to-read ones, both containing newspaper articles. The set of features ex-
ploited for predicting readability has been proved to capture different aspects of sentence
complexity. Thus, the assigned readability score ranges between 0 (easy-to-read) and
1 (difficult-to-read) referring to the percentage probability for unseen documents or
sentences to belong to the class of difficult-to-read documents. For the purposes of
our work, we carried out readability assessment at sentence level, making the analysis
reliable for the comparison with sentence-based perplexity of a NLM.

Sentence-level perplexity scores were computed relying on the GePpeTto model
[De Mattei et al., 2020]. The perplexity (PPL) of the model was computed as in the
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previous study (see Sec. 9.2).

Corpora

In order to test the reliability of our initial hypothesis, we chose four corpora containing
different typologies of texts, i.e. web pages, educational materials, narrative texts,
newspaper and scientific articles. Each corpus includes a balanced amount of difficult-
and easy-to-read sentence. In addition, we also considered in the analysis the Italian
Universal Dependency treebank. This is meant to verify whether the connection between
sentence-level readability and perplexity also holds in a well-acknowledged benchmark
corpus. For each of them, we excluded from our analysis short sentences, i.e. having
less than 5 tokens.

PACCSS-IT We took into account 125,977 sentences belonging to PACCSS-IT! [Brunato
et al., 2016], a corpus of complex-simple aligned sentences extracted from the [tWaC
corpus. The resource was build using an automatic approach for acquiring large corpora
of paired sentences able to intercept structural transformations (such as deletion, reorder-
ing, etc.). For example, the two following sentences represent a pair in the corpus, where
a reordering operation occurs at phrase level (i.e. the subordinate clause proceeds vs.
follows the main clause):

» Complex: Ringraziandola per la sua cortese attenzione, resto in attesa di risposta.
[Lit: Thanking you for your kind attention, I look forward to your answer.]

* Simple: Resto in attesa di una risposta e ringrazio vivamente per l’attenzione.
[Lit: I look forward to your answer and I thank you greatly for your attention.]

Terence and Teacher Two corpora of original and manually simplified texts aligned at
sentence level? [Brunato et al., 2015]. Terence contains short Italian novels for children
and their manually simplified version carried out by linguists and psycholinguists
targeting children with text comprehension difficulties. Teacher is a corpus of pairs of
documents belonging to different genres (e.g. literature, handbooks) used in educational
settings manually simplified by teachers. We exploited 1,644 sentences belonging to
these corpora.

Multi-Genre Multi-Type Italian corpus A collection of Italian texts representative of three
traditional textual genres: Journalism, Scientific prose and Narrative. Each genre has
been internally subdivided into two sub-corpora representative of an easy- vs difficult-
to-read variety, which was defined according to the intended target audience for a
given genre. The journalistic prose corpus includes articles automatically downloaded
from the online versions of two general-purpose newspapers®, while the “easy” sub-
corpus contains articles from two easy-to-read newspapers* addressed to adults with low

1http://www.italianlp.it/resources/paccssfitfparallelfcorpusfoffcomplexfsimplefsentencesfforfitalian/
’http://www.italianlp.it/resources/terence-and-teacher/
3www.repubblica.it and http://www.ilgiornale.it/

4www.dueparole.it and http://www.informazionefacile.it/
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9.3. Is Neural Language Model Perplexity Related to Readability?

Dataset PPL ARA
PACCSS-IT 3,905.83 (£ 21,306.07) 0.55 (4 0.24)
Terence-Teacher 790.85 (4 5,002.62) 0.46 (£ 0.27)
Multi-Genre Multi-Type 570.85 (+ 4,820.12)  0.58 (+ 0.31)
Italian-UD 436.75 (£ 3,633.64) 0.61 (£ 0.30)
Twitter-UD 986.28 (4 2,479.64) 0.59 (4 0.30)

Table 9.2: Perplexity (PPL) and Readability (ARA) mean and standard deviation values for the 5 datasets.

Dataset PPL-ARA  Feats
PACCSS-IT -0.031°  0.169
Terence-Teacher 0.014  0.149
Multi-Genre Multi-Type 0.026" 0.184"
Italian-UD -0.054"  0.332°
Twitter-UD -0.038"  -0.037

Table 9.3: Spearman’s correlation coefficients between sentence-level perplexity and readability scores
(PPL-ARA) and between rankings of linguistic features (Feats). Statistically significant correlations
(p < 0.05) are marked with *.

literacy skills or mild intellectual disabilities. The scientific prose collection consists
of scholarly publications on linguistics and computational linguistics and Wikipedia
pages downloaded from the portal “Linguistics”, representative of the complex and
easy variety respectively. For the narrative genre, we included long novels written by
novelists of the last century and contemporary writers in the corpora of complex variety,
while for the easy variety we collected short novels for children. The complete corpus
contains 56,685 sentences.

Italian Universal Dependency Treebank The IUDT dataset already used in the probing
experiments with the Italian Transformer models.

9.3.2 Sentence Perplexity and Readability

Our analysis starts from a comparison between the average perplexity and readability
scores obtained for each sentence of the five considered datasets. As shown in Table
9.2, readability values (column ARA) are quite homogeneous across the datasets, with
low standard deviation values. On the contrary, the range of perplexity scores is wider
(column PPL), going from an average score of 3,905.83 of PACCSS-IT to 436.75 of
the IUDT miscellaneous portion (Italian UD). These differences seem to provide a first
evidence that perplexity and readability are not correlate to each other.

This intuition has been proved computing the Spearman’s rank correlation coefficient
between the perplexity and readability scores for each dataset. Results are reported
in Table 9.3, column PPL-ARA. As it can be seen, all correlation rates are significant,
except for the result obtained on the Terence and Teacher corpus, possibly due to the
fact that the size of the corpus is too small to allow a significant comparison. Contrary
to our expectations, no correlation was detected between the two metrics for all corpora,
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suggesting that perplexity and and readability are independent from each other.

To further investigate the reasons behind these scores and to deepen the analysis about
the relationship between the two metrics, we investigated whether they capture the same
(or similar) linguistic properties of the sentences. To this aim, we tested the presence
and strength of the correlation between each of the two metrics and the whole set of
linguistic features devised in [Brunato et al., 2020]. Column Feats of Table 9.3 illustrates
the results of this analysis: we report the Spearman’s correlation coefficients between
the two rankings of linguistic features, each ordered by strength of correlation between
feature value and perplexity score and readability score respectively. Once again we
observe rather weak correlation values, with the only exception of Italian-UD which is
the only one reporting a medium correlation (.332). Overall, these results corroborate
our previous findings that the two metrics are not particularly related with each other,
and they further suggest that the linguistic phenomena affecting the perplexity of NLM
and the readability level of a sentence are very different. Consider for example the two
following sentences:

1l furto e avvenuto giovedi notte. [en. The theft has taken place Thursday night.]

Il comitato di bioetica: no all’eutanasia. [en. The bioethics committee: no to
euthanasia.]

While (1) is very easy-to-read, with a readability score of 0.25, but it has a quite high
perplexity score, i.e. 40,737.81, (2) is quite difficult-to-read (ARA=1) but is has a very
low perplexity score (PPL=11.24).

9.3.3 In-Depth Linguistic Investigation

To better explore the motivation behind these results, we performed an in-depth inves-
tigation aimed at understanding the relationship between our set of linguistic features
and the two metrics taken into consideration. Since we noticed that for all datasets
a higher number of features correlates with ARA than with PPL, we selected those
that are significantly correlated with the two metrics. The number of shared features
varies for each dataset, depending on their size. For example, for the two smallest
ones, i.e. Terence and Teacher and the UD Twitter Treebank, we could only consider
34.65% (61) and 44.88% (79) of the whole set of features respectively, while for the
larger corpora the sub-set is wider: 81.81% (144) in PACCSS-IT, 78.97% (139) for
Multi-Genre Multi-Type and 84.65% (149) for the IUD Treebank.

Table 9.4 shows the top ten features for each dataset, i.e. those that obtained the
strongest correlation with both PPL. and ARA. As expected, correlations are generally
stronger between linguistic features and readability scores, although they are lower than
expected. This could be due to the fact that, even if the READ-IT classifier is trained
with a similar set of features, the non-linear feature space makes it difficult to identify
clear correlations with individual features. Similarly, our set of features seem to play
only a marginal role on perplexity. However, this is not the case of the PACCSS-IT
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PACCSS-IT

PPL ARA
Feats Corr Feats Corr
aux_num_pers_dist_Sing+3 0,53 xpos_dist_FF 0,34
dep_dist_cop 0,51 dep_dist_punct 0,32
avg_max_depth 0,50 | upos_dist_ PUNCT 0,32
upos_dist_ ADP 0,50 ttr_form 0,29
xpos_dist_E 0,50 aux_mood_dist_Cnd 0,25
dep_dist_case 0,49 upos_dist_DET 0,25
n_tokens 0,48 dep_dist_det 0,25
dep_dist_root 0,48 ttr_lemma 0,22
xpos_dist_FS 0,48 upos_dist NOUN 0,21

Terence and Teacher

PPL ARA
Feats Corr Feats Corr
xpos_dist_B 0,25 dep_dist_det -0,39
verbs_num_pers_dist_Sing+3 0,23 | upos_dist_ DET -0,38
lexical_density 0,22 upos_dist NOUN -0,37
dep_dist_advmod 0,21 xpos_dist_S -0,37
upos_dist_ ADV 0,21 xpos_dist_ RD -0,29
verbs_num_pers_dist_Plur+3 -0,16 upos_dist_ ADV 0,27
xpos_dist_V 0,16 | dep_dist_advmod 0,25
avg_token_per_clause -0,16 xpos_dist_FF 0,25
upos_dist_VERB 0,14 avg_sub_chain_len 0,24

Multi-Genre Multi-Type

PPL ARA
Feats Corr Feats Corr
n_tokens -0,19 principal_prop_dist -0,42
dep_dist_root 0,19 ttr_form -0,34
dep_dist_advmod 0,19 xpos_dist_FF 0,34
upos_dist_ADV 0,18 dep_dist_det -0,33
n_prepositional_chains -0,18 upos_dist_DET -0,33
xpos_dist_B 0,18 upos_dist_ PUNCT 0,33
upos_dist_ ADP -0,17 dep_dist_punct 0,33
xpos_dist_E -0,17 xpos_dist_FB 0,31
ttr_lemma 0,16 sub_prop_dist 0,27

Italian UD Treebank

PPL ARA
Feats Corr Feats Corr
n_tokens -0,27 principal_prop_dist -0,53
dep_dist_root 0,27 sub_proposition_dist 0,40
n_prepositional_chains -0,26 n_tokens 0,39
avg_max_depth -0,24 | dep_dist_root -0,39
upos_dist_ADP -0,24 ttr_form -0,37
ttr_lemma 0,23 avg_max_depth 0,36
max_links_len -0,23 avg_links_len 0,35
avg_max_links_len -0,23 max_links_len 0,34
xpos_dist_E -0,22 avg_max_links_len 0,34

Italian UD Twitter Treebank

PPL ARA
Feats Corr Feats Corr
upos_dist_SYM 0,38 upos_dist_ PUNCT 0,30
avg_max_depth -0,28 dep_dist_punct 0,30
xpos_dist_SYM 0,28 dep_dist_det -0,29
in_dict -0,24 upos_dist_DET -0,29
dep_dist_vocative:mention 0,23 verbal_root_perc -0,27
in_dict_types -0,22 xpos_dist_ RD -0,27
ttr_lemma 0,21 avg_token_per_clause -0,27
in_FO -0,21 subj_pre -0,27
verbal_head_per_sent -0,19 obj_post -0,24

Table 9.4: Top 10 features along with their correlation scores between perplexity and readability.

corpus, for which the set of considered linguistic features have an higher correlation
with PPL. This can be possibly related to the partial overlap between the GePpeTto
training data and the PACCSS-IT sentences, since the latter is drawn from the ItWac
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corpus which is included in the GePpeTto’s training.

Inspecting these results, we can also observe that correlations between features and
PPL seem to be more affected by genre—specific characteristics. This is particularly
clear if we consider the Italian UD Twitter treebank, for which among the top ten
most correlated features we find some of them characterising social media language,
e.g. symbols (upos-xpos_dist_SYM) or the vocative relation, which marks a dialogue
participant addressed in a text along with the specification, specifically used for Twitter
@-mentions (dep_dist_vocative:mention).

9.4 On the role of Textual Connectives in NLMs Sentence Comprehen-
sion

To pursue the investigation of the inner competence learned by state-of-the art NLMs, it
has become of pivotal importance the availability of challenging test sets, built to probe
the sensitivity of a model to specific language phenomena. So far, most of the efforts
have been focused on assessing the syntactic abilities encoded by NLMs by exploiting
human curated benchmarks, which are usually proposed in the form of minimal sentence
pairs, i.e. minimally different sentences exemplifying a wide array of linguistic contrasts
(e.g. [Warstadt et al., 2020]). Differently from syntactic well-formedness, less explored
is the sensitivity of these models to deeper linguistic dimensions involving semantics
and discourse, such as textual cohesion, which are critical to language understanding.
With this respect, one of the explicit devices that natural languages use to convey textual
cohesion is represented by function words. As observed by [Kim et al., 2019], although
these words plays a key role in compositional meaning as they introduce discourse
referents or make explicit relations between them, they are still under-investigated in
the literature on representation learning. To this end, the authors released a suite of nine
challenge tasks for English aimed to test the NLMs’ understanding of specific types of
function word, e.g. coordinating conjunctions, quantifiers, definite articles.

Taking inspiration from this work, in this study we focus the attention on the role
of textual connectives in the comprehension of a sentence and we introduce a new
evaluation resource for Italian which, to our knowledge, is the first one for this language.
The resource is articulated into two sections, each one corresponding to a distinct task
aimed at probing, in a different format, to what extent current NLMs are able to properly
encode the role of connectives in a sentence. A peculiarity of the dataset is that it
contains sentences that were extracted and minimally modified from existing corpora so
as to test the comprehension of connectives in the real use of language.

9.4.1 Corpus collection

Selecting connectives and extracting sentences As a first step, we defined the linguistic
criteria for the selection of connectives to include in the corpus. By connective we
mean specific words that have the function of drawing a relation between two or more
clauses [Sanders and Noordman, 2000, Graesser and McNamara, 2011]. To this end,
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two resources were employed: the INVALSI reading comprehension and language
reflection tests designed by the National Institute for the Evaluation of the Education
System and the Nuovo Vocabolario di Base of Italian [De Mauro and Chiari, 2016].
Starting from the collection of the INVALSI tests proposed in the last six years for
different grades, we extracted all words which were expressly called ‘connective’ in
the tests or were involved in defining a logical relationship between two sentences.
We thus obtained a first list of 46 elements, belonging to diverse morpho-syntactic
categories (i.e. prepositions, conjunctions, adverbs), which was then integrated with
other 19 connectives extracted from the NVdB. We then checked the distribution of the
selected items in existing corpora and extracted the sentences in which these words
were unambiguously used as sentence connectives. Three different sections of the
Italian Universal Dependency Treebank (IUDT) were used: i.e. ISDT, POSTWITA and
TWITTIR®?, the first one representative of standard language and the latter collecting
Italian tweets. We employed PML TreeQuery® to query the treebanks and filter the
sentences containing the connectives we were interested in. In particular, to exclude
occurrences which do not have the role of phrasal connectives (e.g. the conjunction e
joining two nouns), only sentences in which the connective was headed by a verb or a
copula were taken into account. Given the overlapping of the frequency data in the three
corpora and the potential non-standard use of connectives in treebanks representative
of social media texts, also due to genre-specific features (e.g. hashtag, emoticons etc.),
we decided to consider only the first 21 most frequent connectives occurring in ISDT.
Further considerations on their distributions led us to the deletion of per, cosi, ancora,
because of their ambiguous behavior as textual connectives (e.g. we noticed that the
majority of the occurrences of per involves the presence of an infinite verb, a distribution
which is far from the other connectives). The following 18 connectives were finally
considered: e, se, quando, come, ma, dove, o, anche, perché, poi, mentre, infatti, prima,
pero, invece, inoltre, tuttavia, quindi.

Once established the final list, all sentences containing the selected connectives were
extracted from ISDT and eventually modified following some patterns, to guarantee
sentence comprehension. For example, in some cases two sentences occurring in the
treebank in a subsequent order, but that were clearly extracted from the same text, were
joined together to form a unique sentence, through the insertion of the appropriate
punctuation. This happened e.g. when the connective appeared at the beginning of
the second sentence joining this to the first one, which serves as the antecedent to
comprehend the logical relationship. For the collection of the final dataset, we also
tried to include sentences with different degrees of syntactic and lexical complexity,
considering the number of subordinate clauses and the variety of the lexicon as related
proxies.

The collected sentences were grouped in two sections aimed at testing the correct
comprehension of connectives in a different format, i.e. through an acceptability assess-

Shttps://universaldependencies.org/treebanks/it—comparison.html
Shttps://ufal.mff.cuni.cz/pmltq
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Section Id Sentence
e_l1A Larte e la scienza sono libere e libero ne ¢ I’insegnamento.
. e_11NA L’arte e la scienza sono libere tuttavia libero ne ¢ 1’insegnamento.
Acceptability . . N N .
ma_64A Paolo si muove con difficolta, ma ¢ sempre allegro e di buon umore.
ma_64NA Paolo si muove con difficolta, perché ¢ sempre allegro e di buon umore
se_23cl Che cosa possiamo fare in estate ... vogliamo partire per le vacanze e

abbiamo un cane o un gatto? [ se quando perché dove come]

Cloze test mentre_162cl  Nelle botteghe artigianali della produzione di piastrelle la smaltatura ¢
ancora tradizionale, ... i forni, come & naturale, oggi funzionano a gas.
[mentre invece come dove perché]

Table 9.5: Examples from the dataset. Sentences are indicated with the last part of id, which gives
information about the target connective, the position of the sentence in the section and the label in
each section (A= ‘acceptable’, NA= ‘not acceptable’; cl="‘cloze test’). For the cloze task, the target
connective is marked in bold and the plausible alternative in italics.

ment task and a cloze test task. Table 9.5 provides an example of sentences/sentences
pairs for each task.

Acceptability assessment section To design the acceptability assessment task, we selected
15 sentences per connective from the whole dataset. For each sentence, an unacceptable
counterpart was created by replacing the original connective with another of the list. The
replacement strategy was meant to obtain unacceptable sentences with contradictory
or nonsensical meaning but preserving their grammaticality. Indeed those sentences
should be the most challenging one for NLMs, which have been shown to be capable of
detecting sentence grammaticality [Jawahar et al., 2019], but still struggle to track down
unacceptable meanings and contradictions. Nevertheless, we were not always able to
guarantee this constraint as for some specific contexts none of the available connective
could be substituted without affecting the resulting grammaticality. This happened in 98
cases, which we decided to keep in the dataset but we signaled with the label ‘no’ in the
field ’grammaticality’. A few sentences were also deleted due to ambiguity. The final
section contains 518 sentence pairs, i.e. 259 acceptable and 259 unacceptable ones.

Cloze test section The second section was designed as a cloze test task and contains
270 sentences, 15 for connective. For every sentence the original connective was
replaced by a blank space and 5 alternatives were proposed for completion: the target, a
plausible alternative and three implausible options. For ‘plausible alternative’ we mean
another connective of the list that could occupy the same linguistic contest of the target,
yielding to an identical meaning or to a different, yet totally plausible, reading. As for
the acceptability task, it turns out that for some connectives (e.g. prima) it was very
challenging, if not impossible, to propose such a plausible connective. In those cases,
that in truth are only a minority, it has been proposed an alternative that at least should
guarantee the grammaticality.
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Acceptability label AvgIntScore (StDev)

Acceptable 4.286 0.519
Unacceptable 1.822 0.451
Unacceptable (AG) 1.616 0.350

Table 9.6: Average scores assigned by humans (with standard deviation) to the acceptable, unacceptable
and unacceptable+ungrammatical sentences.

9.4.2 Corpus Annotation

The two sections of the dataset were splitted into 9 surveys (5 for the acceptability
assessment task and 4 for the cloze task) and submitted to human evaluation by recruiting
Italian native speakers of different ages through the Prolific platform

In the acceptability assessment task, participants were asked to judge the accept-
ability of each sentence on a 5-grade Likert scale (from 1=°‘totally unacceptable’ to
S5=‘totally acceptable’). Although this makes the dataset more challenging, we assume
that acceptability is a gradual rather than binary notion as it is affected by many fac-
tors [Sorace and Keller, 2005, Sprouse, 2007]. To disambiguate the interpretation of
sentence acceptability and orient annotators in giving their judgments, the survey guide-
lines encouraged them to think if they found the sentence natural in Italian and if they
would have used it in a real conversation or any other communicative context.

For the cloze test task, participants were required to supply the missing element
choosing among the proposed options plus the one “none of the previous options is
suitable”. Each survey was completed by 20 annotators on average. The number of
annotations per sentence in the acceptability task ranges from 16 to 21 and for the cloze
task from 18 to 21. To improve data quality, we discarded annotators who took less than
10 minutes to complete the test, considering the average threshold time for each survey.
This led us to reject 5 annotators only for the acceptability task.

Table 9.6 reports the average human score and standard deviation obtained by the
acceptable and unacceptable sentences. For the latter, we separately computed these
scores for the subset of sentences which were also labeled as ungrammatical (see Section
9.4.1). As it can be seen, humans perform very well on the task assigning quite higher
scores to the acceptable sentences with respect to the unacceptable ones, also with
little variability. Within the unacceptable subset, the slightly smaller score received on
average by ungrammatical sentences provides further evidence that humans are sensitive
to this distinction.

Also for the cloze test task the human evaluation confirms the validity of the resource.
Indeed, as shown in Table 9.7, the target connective was largely chosen by the majority of
annotators as the most adequate one, although for ~20% of sentences humans preferred
the plausible candidate or the two options got half annotations each. The percentage
of sentences for which the majority label was given to an implausible choice is largely
negligible.
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Cloze task choice N.Items (%)

Target 215 79.63
Plausible alt. 46 17.04
Implausible alt. 4 1.48
Target=Plausible alt. 5 1.85

Table 9.7: Number and % of sentences for which the majority label was assigned to the target connective,
to the plausible alternative, to an implausible alternative or equally balanced between the target and
the plausible alternative.

AcceptabilityLabel AvgPPLL. minPPL. maxPPL

Acceptable 42.512 2.059  455.961
NonAcceptable 78.280 3.534  390.824
NonAccept+Agr 98.992 9.933 1178.162

Table 9.8: Average, minimum and maximum perplexity value given by the model to the acceptable,
unacceptable and unacceptable+ungrammatical sentences.

9.4.3 Testing the sensitivity of Neural Language Models to connectives

Once built the new evaluation dataset, we performed some preliminary analysis aimed
at testing the performance of NLMs in the two tasks. Specifically, we performed two
distinct evaluations. For the acceptability assessment task, we computed the perplexity
(PPL) score assigned by the GePpeTto model to all sentences of the corresponding
section. We assumed that higher PPL scores should be assigned to sentences labeled
as unacceptable with respect to their original version. The sentence-level PPL was
calculated using the formula reported in Sec. 9.2.

By inspecting the results in Table 9.8, we observed that the average PPL score
assigned to the acceptable sentences is quite lower than the one assigned to the unac-
ceptable ones (i.e. 42.512 vs 78.280).

As expected, for the subset of unacceptable sentences, perplexity was on average
higher for the ones marked as ungrammatical (98.992), reflecting the model’s capability
of encoding syntactic phenomena. Interestingly, among unacceptable sentences, those
obtaining lower PPL scores were perfectly well-formed but with an implausible meaning,
as in the case of:

1l film ’Le chiavi di casa’ ha partecipato al Festival del Cinema di Venezia di
quest’anno, perché non ha vinto nessun premio (PPL = 13.892).

To compare humans and model performance, we also computed the Spearman’s
rank correlation (p) between the average acceptability score given by annotators and
the PPL score assigned by the model to the same sentences. Although limited to this
analysis, the resulting very weak correlation (i.e. p = —0.120, p-value < 0.01) suggests
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Predict. 10_match 1st_match

Target (85) 31.48% (111) 41.11%
P1. alt. (12) 4.44% (23) 8.52%
Target+Pl. alt. (148) 54.81% - -
Other (25) 9.26% — -

Table 9.9: (Number) and % of BERT’s completions in which only the target, only the plausible alternative,
both of them or none of them (Other) occur in the first 10 predictions (10_match). (Number) and %
of the completions in which the target and the plausible alternative were predicted with the highest
probability are also reported (1st_match).

that connectives differently impact on the ability of humans and models to assess the
plausibility of a sentence.

As for the cloze task test, we relied on the pre-trained Italian version of the BERT
model already used in the experiments of Sec. 8.5 and 8.6. We extracted the first ten
completions provided by the model trough the Masked Language Modeling task (MLM)
for each sentence, along with their probabilities. This allowed us to inspect whether and
in how many cases either the target connective or the plausible alternative appear in the
top-ranked predictions.

As shown in Table 9.9, for the large majority of cases BERT is able to infer in its
first 10 predictions that the sentence should be completed with a correct connective.
That happens in 86.29% of the sentences for the target, resulting from the sum of the
cases where only the target occurs in the completions (31.48%) with the cases in which
both the target and the plausible alternative were predicted (54.81%), and in 59.25%
for the plausible alternative (that is 4.44% plus 54.81%). Focusing instead on the first
completion for each sentence, we observe that in almost half of the sentences BERT
assigns the highest probability to the original connective (41.11%) or to the plausible
one (8.52%).

We are currently performing a more qualitative analysis to better investigate the cases
in which the correct connective hasn’t received a high probability score, as well as those
in which neither of the two options appeared at all (i.e. Other cases in Table 9.9), in order
to understand whether the other completions can still be considered as plausible ones.
Preliminary findings showed that, among the Other cases, about 57 of the completions
provided by BERT are unacceptable and 34 of them are dubious acceptable i.e. not
clearly recognizable as acceptable’, as in the case of the following sentence®:

Secondo gli esperti, in Italia i giovani leggono meno i giornali rispetto ai giovani
di altri Paesi europei, ... rispetto agli anni passati i giovani tra i 14 e i 19 anni
leggono pin spesso i giornali. [perché anche pero].

7Note that in order to assign the acceptability label of each completion we refer to the usage of the Italian language as standard
as possible.

8The unacceptable completion is marked in bold, the dubious acceptable one is reported in block and the original connective is
indicated in italics.
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Nevertheless, the majority of Other’s completions can be considered as acceptable
ones. In fact, BERT predicted a word leading to the same meaning (or, at least, very
similar) to the original sentence in more that 60 cases. Moreover, in most cases (i.e. 93)
the completions provided are plausible ones, although in some of them the sentences
acquire different meanings.

9.5 Discussion

The experiments devised in Sec. 9 allowed us to focus on the relationship between
linguistic competence and the information learned by NLMs within their internal mech-
anisms without relying on task-oriented approaches. In Sec. 9.2 we proposed an
investigation of the linguistic phenomena characterizing the perplexity of GPT-2 and
a pseudo-perplexity metric computed for the BERT model. We first reported robust
correlations between GPT-2’s perplexity and the sentence-level likelihood computed
with BERT. This is a quite prominent result, especially considering that these two metrics
are differently computed as a consequence of the two NLMs architectures. Then, we
found the effectiveness of our set of linguistic features in predicting the perplexity of the
two NLMs, especially for shorter sentences. Despite similar trends, we observed some
differences between the two NLMs both at the level of regression accuracy and in the
rankings of the features exploited in the prediction of perplexity. GPT-2’s perplexity is
better captured by the considered features and it resulted to be more affected by lexical
parts-of-speech and features capturing the vocabulary richness of a sentence. On the
contrary, BERT’s perplexity seems to be best predicted by syntactic features highly
sensitive to sentence length.

In a follow-up study, we focused instead our analysis on the relationship between
NLM perplexity and the scores assigned by a readability assessment tool to each sentence
extracted from several datasets differing at the level of textual genre and language variety.
Results showed that comparing the rankings obtained using the two metrics we cannot
find any significant correlation, either between the scores of the two metrics or with
respect to the set of linguistic features that mostly impact their values.

By introducing a new evaluation dataset for Italian designed to test the understanding
of textual connectives in real-usage sentences, we showed that in several cases the NLMs
are capable of distinguishing between acceptable and unacceptable sentences, thus
suggesting their ability to encode sentence meaning within their internal mechanisms.
However, it remains unclear to what extent these models rely on semantic acceptability
features, since we observed cases in which they fail to recognize implausible meaning
of perfectly grammatical sentences.
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CHAPTER 1 0

Modeling Linguistic Abilities in Humans and NLMs

The experiments described in the previous chapter allowed us to investigate in detail the
amount of linguistic competence encoded by the most recent NLMs. Exploiting different
approaches, mostly based on a set of linguistic features that have proven to be highly
predictive in tracking the evolution of L1 and L2 learners’ linguistic competence across
time, we showed that these models are able to implicitly encode a variety of language
phenomena within their internal mechanisms. Nevertheless, there are still many open
questions about their ability to learn linguistic properties. For instance, while the vast
majority of previous studies focused on the inner working of NLMs testing their abilities
to recognize specific linguistic phenomena (e.g. Subject-Verb agreement, negative
polarity items) [Linzen et al., 2016, Wilcox et al., 2019, Kann et al., 2019, Warstadt et al.,
2019] either on gold annotated [Liu et al., 2019a, Hewitt and Manning, 2019, de Vries
et al., 2020] or on artificially created data [Yin et al., 2020, Li et al., 2021], relatively
little work has been done in order to interpret NLMs linguistic knowledge considering
authentic texts.

Starting from this premise, in this chapter we present a study we devised in order to
test the robustness of the BERT model against non-standard forms emerging in authentic
texts. In particular, relying on the errors manually annotated on the CIfA corpus, we
designed three sets of experiments with the aim of investigating: i) whether and in
which layer BERT internal representations are able to discern the presence of a specific
learner error; ii) how and to what extent BERT is robust to non-standard linguistic forms
analyzing how its internal representations and attention heads; iii) how learner errors
affect the ability of the model to implicitly encode linguistic knowledge.
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10.1 Investigating NLM’s Robustness to Non-standard Linguistic Forms

In this study, we decided to focus on the less considered typology of authentic texts by
proposing an extensive interpretation study aimed at understanding the implicit behaviour
of one of the most prominent NLM, BERT [Devlin et al., 2019], when dealing with a
particular type of noisy texts, namely essays written by native language learners. Our
idea is that this typology of authentic texts represents a very interesting and challenging
testbed to deeply assess the robustness of NLMs since they contain both standard and
non-standard productions, i1.e. erroneous uses of standard linguistic forms. Although
authentic learner corpora have been already used to interpret the working principles
of NLMs, the interest has been largely focused on evaluating how these models solve
specific downstream tasks, i.e. to improve Grammatical Error Detection (GED) [Bell
et al., 2019, Kaneko and Komachi, 2019] and Grammatical Error Correction (GEC)
systems [Grundkiewicz et al., 2019, Kaneko et al., 2020]. On the contrary, to the best of
our knowledge, less attention has been paid to interpret the inner mechanisms and the
robustness of these models before any fine-tuning on these data.

Our interest about the robustness of a NLM in the pre-training stage stems from
the still open and largely discussed issue concerning the relationship between the
information encoded in a representation and the information a model uses to solve
specific downstream tasks. Therefore, we first provide a comprehensive analysis of how
non-standard linguistic forms are encoded in the pre-trained model by inspecting its inner
mechanisms from different perspectives with the aim of understanding whether, and to
what extent, the internal representations diverge when the model is exposed to incorrect
and correct forms. Based on the acquired evidence, we then try to assess the impact
of errors on the model’s linguistic competence. Our intuition is that investigating and
quantifying in the pre-training stage the inner mechanisms of a NLM and its linguistic
abilities on texts containing non-standard linguistic forms should be of extreme interest
for future studies about NLMs’ robustness in downstream tasks. Although this issue is
still highly debated [Ravichander et al., 2021], it has been demonstrated that introducing
linguistic information [Zhou et al., 2020, Bai et al., 2021], during the pre-training phase
enhances model’s performances. In addition, in our previous experiments (see Chapter
8) we showed that there is a significant correlation between the degree of linguistic
knowledge a NLM implicitly acquires in the pre-training about a wide range of both
local and structural phenomena specific of a sentence and its ability to solve correctly a
downstream task where such linguistic knowledge is highly involved.

To investigate the robustness of the model, we test BERT on the CItA corpus. The
choice of relying on this corpus has been explicitly driven by two main motivations. First,
as showed in Sec. 5, CItA is supplied with the manual annotation of learner errors and
their corrections, carried out according to a three-leveled annotation scheme where each
label targets a specific of language competence, i.e. grammar, orthography and lexicon.
The variety of errors contained in the corpus makes it particularly suitable to investigate
whether, similarly to what happens for human readers, also for a NLM there is a ranking
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of robustness in coping with specific errors corresponding to different linguistic domains.
As a large body of empirical studies in psycholinguistics suggests, some syntactic errors
are not easily detected even by humans, such as those involving agreement attraction
phenomena in the comprehension of long-distance constructions [Bock and Miller,
1991, Franck et al., 2002]. On the other hand, humans are extremely robust to cope
with real input noise and they can derive a meaningful representation of a sentence
in spite of the presence of spelling and grammatical errors, homophones replacement,
newly introduced words or even an existing word used in an unfamiliar or a new context;
instead, all these types of small input perturbations have been shown to negatively
affect NLP systems, for instance, current Neural Machine Translation models [Belinkov
and Bisk, 2018, Xu et al., 2021]. Second, authentic texts written by L1 learners are
not affected by the interference of a pre-existing language and the peculiarities they
exhibit can reflect both errors deriving from a still immature writing competence and
less acceptable forms that could be admissible in informal spoken language but not
in formal writing. From this point of view, these productions offer the possibility to
test whether and to what extent NLMs show a sensitivity to linguistic errors which is
comparable to the native speaker’s one and if the presence of errors impacts on their
ability to identify the correct structure of a sentence.

We believe that a comprehensive investigation of the robustness of a neural language
model against noise data should be pursued accounting for more than one of the in-
terpretation techniques defined in the literature. This represents a further innovative
characteristic of our approach: in fact, the aim of all proposed experiments is not only to
assess BERT’s abilities to detect errors in L1 students written productions, but also to
provide a better understanding of its internal mechanism by showing whether and how
BERT’s representations and distributional patterns of attention heads are affected by
the presence of a specific error, how they change between the wrong and the corrected
version of the same sentence and which typologies of error affect more the linguistic
properties that the model has implicitly learnt of a sentence.

The contributions of our work are as follows:

1. we studied the behaviour of the pre-trained BERT model when dealing with
authentic written productions by L1 learners containing non-standard linguistic
forms (errors) and their corresponding correction;

2. differently from previous work focused on the interpretability of NLMs, we inves-
tigated how BERT perceives errors relying on multiple interpretation techniques,
ranging from the definition of probing tasks to the analysis of word- and sentence-
level representations and attention heads;

3. based on the robustness of the model in coping with non-standard linguistic forms,
we studied whether it is possible to obtain a ranking of errors which corresponds to
a specific area of language knowledge that a learner has to master (i.e. grammar,
orthography and lexicon);
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4. we studied the relationship between the presence of certain typologies of linguistic
errors in a sentence and BERT’s ability to correctly encode within its internal
representations a set of linguistic phenomena characterising that sentence.

10.2 Neural Language Models and Noisy Text Data

Particularly relevant to the main focus of our study is the amount of previous studies
focused on the analysis of state-of-the-art NLMs when dealing with noise in texts. In
particular, these works are mainly focused 1) on the analysis of how pre-trained NLMs
perform in specific downstream tasks when fine-tuned on noisy text data [Sun et al.,
2020a, Kumar et al., 2020] and ii) on the definition of new approaches to increase model
robustness to such data [Belinkov and Bisk, 2018, Malykh, 2019, Namazifar et al., 2021].
For instance, [Kumar et al., 2020] tested BERT’s performance on sentiment analysis and
textual similarity by gradually introducing spelling mistakes and typos on the benchmark
datasets, showing that noise clearly affects the performance of the model. It should be
noted that the vast majority of these studies are focused on a single phenomenon (e.g.
spelling mistakes) while few of them take into account how different sources of linguistic
noise impact on these models. The study by [Yin et al., 2020], which is partially related
to our, represents an exception in this context: the authors proposed an approach to
automatically simulate various types of grammatical errors and analyzed how these
different types affect downstream tasks. Specifically, by relying on a rule-based method
to mimic eight of the most frequently occurring grammatical errors in the NUS Corpus
of Learner English (NUCLE) [Dahlmeier et al., 2013], they: i) investigated NLMs
robustness to noises by evaluating them on different downstream tasks; ii) quantified
NLMs capacities of identifying grammatical errors by probing individual layers through
a linguistic acceptability task; iii) studied how models capture the interaction between
grammatical errors and context. Their experiments showed that the tested models (i.e.
ELMo, BERT and RoBERTa) are influenced by ungrammatical inputs and that errors
related to word choice and subject-verb agreement are the most harmful types. Further-
more, probing BERT’s abilities in identifying grammatical errors, they demonstrated
that middle layers are better in identifying errors than lower layers, although higher
layers are better suited for locating errors related to long-range dependencies and verbs.
More in line with previous studies aimed at testing linguistic knowledge of NLMs, but
with a specific focus on the impact of specific linguistic anomalies on the model’s inner
mechanisms, [Li et al., 2021] proposed a different approach to test NLM’s abilities
in a grammaticality judgement task. They introduced a new probing tool based on a
Gaussian model which is trained to fit distributions of embeddings at each layer of
three transformer models. They aimed at understanding whether NLMs show different
surprisals in their internal layers when exposed to linguistic anomalies. After evaluating
their method on the BLiMP dataset [Warstadt et al., 2020], they studied whether NLMs
exhibit different behaviour corresponding to different classes of anomalies and showed
that morphosyntactic anomalies produce high surprisal already in the early layers of the
models (from layers 3-4).
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Even if we share with these previous studies the attention to noisy data, we differ in
two main aspects: i) we relied on authentic texts, rather than on artificially created ones,
to investigate how a NLM perceives erroneous linguistic forms, ii) we concentrated our
analysis on the interpretability of a pre-trained model, rather than on a fine-tuned one,
with the aim of providing evidences and insights about the behaviour of that model when
exposed to different typologies of noisy data.

10.3 Neural Language Models and Learner Corpora

The choice of learner corpora as the testbed for our study was motivated by the peculiar
and potentially insightful nature of this source of noise data. Indeed, much more than
other typologies, these texts exhibit different types of errors or deviant uses from a given
language norm that can be also observed across multiple types of real-word texts.

As previously stated, these corpora have been tested with Neural Language Models
with the main purpose of improving the performance of GED and GEC systems rather
than investigating the impact of specific error typologies on the hidden representations
of these models. The only exceptions concern the analysis of the inner mechanisms
of GEC/GED systems and their performance on specific error categories [Choe et al.,
2019, Kaneko and Komachi, 2019]. For instance, [Kaneko et al., 2020] investigated
the characteristics of the hidden representations of a pre-trained BERT model and a
fine-tuned one in a grammatical error detection task. In particular, visualizing the hidden
representations from the last layer of the two NLMs, they showed that the pre-trained
model does not distinguish between correct and incorrect clusters. On the other hand,
fine-tuned BERT generates a vector space that can separate correct and incorrect words.

Differently, [Misra et al., 2019] proposed an analysis based on the relatedness of
polyglot [Al-Rfou’ et al., 2013] and fasttext [Bojanowski et al., 2017] vector repre-
sentations extracted from L2 (English) erroneous content words in order to investigate
whether word embeddings models capture the interference of the first language when a
subject processes words in a L2. Specifically, they introduced a new metric (i.e. EPNO)
to quantify the semantic relatedness between correct-incorrect words in terms of their
nearest neighbors in the vector space. Computing the Spearman’s correlation between
EPNO values of L2 words and the translations in the corresponding L1 (e.g. Catalan,
French, German), the authors showed that the incorrect-correct word pairs that are highly
overlapping with each other in a person’s L1 are also highly overlapping in English, thus
indicating equal strength between the similarities in L1 and L2.

Rather than focusing on the development of GED or GEC systems, in our study we
investigated whether and how errors occurring within a learner corpus are perceived by
a NLM and how their presence influences its ability to encode linguistic competence. A
further main novelty of our approach with respect to the aforementioned related works
is represented by the typology of learner corpora taken into account. Differently from
previous studies, we do not rely on essays written by second language learners but
by monolingual native speakers. Even if it is out of the scope of this paper to revisit
the differences between first and second language learning, as we mentioned in the
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Class of error Type of Modification Error Code Frequency
Grammar
Erroneous use of tense 111 505
Verbs Erroneous use of mood 112 259
Erroneous Subject-Verb agreement 113 208
Omission 114 1
Prepositions Err'on.eous use 121 251
Omission/Redundancy 122 20
Erroneous use 131 193
Pronouns Omission 132 14
Redundancy 133 28
Erroneous use of relative pronoun 134 50
Nouns Erroneous gender agreement 161 36
Erroneous number agreement 162 48
Articles Erroneous use 141 177
Conjunctions Erroneous use 151 27
Other 100 177
Total 1,994
Orthography
Double consonants Omission 21 226
Redundancy 212 132
Omission 221 97
Use of Redundancy 222 67
Erroneous use of monosyllabic words 231 306
Monosyllables ..
po and po instead of po’ 232 72
Apostrophe Erroneous use 241 190
Capital letter Erroneous use 251 497
Other 200 1236
Total 2,823
Lexicon
Vocabulary Erroneous use 311 289

Table 10.1: Summary of the CItA Error annotation schema.

introduction, we believe that authentic texts written by L1 learners can be particularly
challenging as they are not affected by the interference of a pre-existing language.
Indeed, if errors by L2 learners have been more codified in the literature [Heydari and
Bagheri, 2012,Richards, 1971] and part of them can be somehow more predictable based
on the similarities or differences between the source and the target language, we can
expect that L1 learners would make a variety of errors reflecting both a still incomplete
mastery of lexical, grammatical and spelling skills and less acceptable forms that could
be admissible in informal spoken language but not in formal writing.

10.4 The CIA corpus

For the purpose of our study, we relied on the CItA corpus. As we discussed in the
experiments we devised in Section 5, a main peculiarity of the corpus is represented
by the annotation for writing errors made by students along with their corresponding
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corrections manually performed by a secondary school teacher. It is worth pointing
out here that the annotation scheme devised to mark the writing errors was specifically
meant to intercept authentic deviations from the Italian linguistic norm, as defined by
the literature on the evaluation of written skills of Italian as first language. As shown
in Table 10.1, the scheme covers different classes of errors corresponding to several
areas of Italian language competence. This is the reason why we chose the CIfA corpus
to test how different learner errors are perceived by BERT. Specifically, the schema
is articulated according to the following dimensions: (i) the macro-class of error, i.e.
grammatical, orthographic and lexical; (i1) the class of error, i.e. the linguistic element
involved (e.g. verbs, pronouns, monosyllables); (iii) the type of error (e.g. the erroneous
use of tense or mood in verbs, the redundancy of pronouns), which corresponds to a
specific error code.

As we can notice in Table 10.1, the macro-classes of errors have different distributions
in the corpus with a main prevalence of the grammatical and orthographic ones, while
the erroneous uses of lexicon are less represented. Specifically, as regards grammatical
errors, the most common type of error concerns the incorrect use of verbal tenses, as in
the following example':

Erroneous sentence: Poco prima dell’inizio della scuola, mentre leggevo un libro, viene mia madre in camera

mia [...] [lit. Shortly before the beginning of school, while I was reading a book, my mother comes into my
room [...]]

Corrected sentence: Poco prima dell’inizio della scuola, mentre leggevo un libro, venne mia madre in camera
mia [...] [Shortly before the beginning of school, while I was reading a book, my mother came into my room

[...]]

In this case, the student erroneously used the present tense viene (‘comes’) after the
imperfect tense leggevo (‘was reading’) thus violating the correct sequences of tenses.
Among the orthographic errors, the most frequent class is the Other one, which
includes all the errors that not belong to any of the other classes of this macro-class. This
is the case of the following sentence where the verb lascera (‘will leave’) is erroneously
misspelled with a redundant character:
Erroneous sentence: Durante la nostra crescita si possono perdere e conoscere nuovi amici, ognuno di loro ci

lasciera qualcosa e ci arricchira. [lit. During our growth we can lose and meet new friends, each of them will
leeave us something and enrich us]

Corrected sentence: Durante la nostra crescita si possono perdere e conoscere nuovi amici, ognuno di loro ci
lascera qualcosa e ci arricchira. [During our growth we can lose and meet new friends, each of them will
leave us something and enrich us]

Note also that a single sentence of the corpus may contain more than one error,
possibly belonging to different macro-classes and involving the erroneous use of different
linguistic elements. This is for example the case of the following sentence, where one
orthographic errors and two grammatical errors occur:

Erroneous sentence: Mi piacerebbe racogliere molti sassi e giocare con gli amici a palla a volo e mi piacerebbe
andare ma mia mamma non gli va e non mi vuole mandare con la nonna. [lit. I would love to pik up lots

!n all the examples, we present the erroneous sentence (Erroneous sentence) and the corresponding corrected version (Corrected
sentence). The erroneous token and its corresponding corrected version are marked in bold. Whenever possible, we tried to provide
a translation showing how the error would appear in English.
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Table 10.2: Number of minimal edit pairs in the CItA subset for the 18 typologies of errors.

Error Code Sentences Error Code Sentences

111 366 100 155
112 228 212 129
113 177 222 64
121 240 231 282
131 174 232 69
134 43 241 118
141 162 251 453
161 33 200 1,052
162 41 311 256

of rocks and play volleyball with friends and I would love to go but my mom to him doesn’t feel like it and
won’t send me with grandma.]

Corrected sentence: Mi piacerebbe raccogliere molti sassi e giocare con gli amici a palla a volo e mi
piacerebbe andare ma a mia mamma non va e non mi vuole mandare con la nonna. [1 would love to pick up
lots of rocks and play volleyball with friends and I would love to go but my mom doesn’t feel like it and won’t
send me with grandma.]

The first error concerns the misspelling of the verb raccogliere (‘to collect’), which
requires a double consonant, the second one corresponds to the erroneous omission of
the preposition a (‘to’), while the last one involves a redundant clitic pronoun gli (‘to
her’), which should be omitted to have a fully grammatical sentence.

For the purpose of the experiments carried out in this study, we modified the original
CItA corpus in order to pair each erroneous sentence with one or more corrected sen-
tences, each containing only one single local edit. The resulting corpus thus consists in
a collection of minimal edit pairs, one for each error type, as shown in the following
example, where the original sentence ("La parco ce tante persone" [lit. The park there
is many people]), which contains two different types of grammatical errors, i.e. the
erroneous use of preposition (error type=121) and of subject-verb agreement (error
type=113), has been included in two pairs, each corresponding to one of the two original
errors:

Erroneous sentence (121): La parco ci sono tante persone. [lit. The park there are many people.)
Corrected sentence: Al parco ci sono tante persone. [At the park there are many people.]

Erroneous sentence (113): Al parco ce tante persone. [lit. At the park there is many people.)

Corrected sentence: Al parco ci sono tante persone. [At the park there are many people.]

We also excluded all the error types that are less represented in the corpus, i.e. those
occurring in less than 20 sentences. Moreover, in order to avoid mismatches between
pairs of original-corrected sentences, we excluded all errors with Omission as type of
modification. At the end of this process, we ended up with a collection of 4,042 minimal
edit pairs distributed in 18 different typologies of errors as showed Table 10.2.
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10.5 Methodology

In order to inspect how the presence of an error affects the corresponding sentence
representation encoded in the pre-trained model and to what extent the model is robust
against errors, we designed the following three sets of experiments:

Probing for error detection abilities We studied whether and in which layer BERT internal
representations are able to discern the presence of a specific learner error within our
CItA subset of sentences. To this end, we devise an experiment aimed at verifying if
a linear model trained with BERT’s layer-wise internal representations can detect the
erroneous sentence in a minimal edit pair (sentence-pair classification task).

Analysis of attention heads and internal representations We further investigated how and to
what extent BERT is robust to non-standard linguistic forms analyzing how its internal
representations and attention heads behave when exposed to the 18 different typologies
of learner errors and their corresponding revisions.

Probing for linguistic competence We analyzed how learner errors affect the ability of
BERT to implicitly encode the linguistic knowledge of a set of linguistic features
characterising a sentence. For this purpose, we trained a probing model on sentences
extracted from the CItA corpus that did not contain errors and tested it on our 18 sets of
minimal edit pairs, each corresponding to a different type of errors.

As regards the contextualized NLM, we choose the pre-trained Italian version of
BERT already used in the experiments on the Italian models described in Chapter 8.

10.6 Is BERT able to recognize learners errors?

For the purpose of probing the model’s ability to discriminate erroneous vs. corrected
sentences, we devised a sentence-pair probing task?. In particular, we relied on a Linear
Support Vector Classifier (LinearSVC) that, for each type of error, takes as input layer-
wise BERT internal representations® of each sentence in a minimal edit pair and predicts
which sentence of the pair is the erroneous one. We devised three sets of experiments:
i) in the first one we built a classifier using all sentences in the CItA corpus, without
distinguishing them into distinct subsets of error typology, ii) in the second one, we
built three binary classifiers, one for each of the three macro-categories of Grammar,
Orthography and Lexicon; ii) in the third one, we train a classifier for each error type.
In all cases, the classifier is provided with: 50% of the samples in the following order
(Serroncouss Scorrected) and 50% in the reverse order (Scorrected, Serroncous)- VMOreover, since
the amount of sentences varies according to the type of error involved, we designed

2We also tested BERT’s competence to identify sentences with an error relying on a single-sentence probing task observing poor
performance (i.e. accuracy scores below a random baseline), thus suggesting that pre-trained BERT is not able to implicitly identify
learner errors by looking only at the internal representations extracted from individual sentences.

3We relied on the activation of the first input token [CLS], that has been shown to summarize the information encoded in an
input sequence [Jawahar et al., 2019].
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Figure 10.1: Sentence-pairs probing scores (in terms of accuracy) for each BERT’s layer (rows) and
according to: i) all sentences in the dataset (All); ii) sentences belonging to the three macro-categories
of Grammar, Orthography and Lexicon. Experiments were performed considering all the sentences
available for each macro-category (All sentences) and balancing each macro-category according to a
fixed number of sentences (Balanced_1 and Balanced_2). Average accuracy scores are also reported
(rows AVG).

two different experimental settings: a first one where all the set of sentences of each
macro-category of error were used and a second one where we balanced all the datasets.

Figure 10.1 reports the classification results considering the first two experiments. In
particular, the All sentences heatmap contains the results obtained using all sentences,
the Balanced_I heatmap shows the accuracy scores obtained by undersampling the
datasets to the smallest macro-category among the three ones, i.e. the Lexicon category
that includes 256 sentences. The Balanced_2 setting differs with respect to the macro-
category of errors considered for the undersampling. In this second case, we considered
only the two most numerous macro-categories, i.e. Grammar and Orthography, and we
reduced the datasets to the smallest one represented by the Grammar category with 1,502
sentences. The evaluation was performed using a 10-fold cross validation and accuracy
as evaluation metric.

As we can see, classification results of the first experiment (columns A/l in the
heatmaps) are all above a majority baseline (0.50) thus showing that BERT is able to
distinguish an erroneous from a corrected sentence despite the typology of error, at least
to a moderate extent. As expected, the accuracy scores when the classifier uses BERT’s
representations of the balanced datasets are slightly lower. In line with what observed
by [Yin et al., 2020] in their study on the robustness of NLMs in an Grammatical
Error Detection task, in both settings, the best scores are achieved in the middle layers,
specifically between layer 7 and 9. The overall accuracy tends to decrease as far as the
last layers are approached.

If we consider the results of the second experiment, i.e. the one taken into account
the tree macro-typology of errors separately, we observe a clear distinction between the
accuracy scores reported in the unbalanced and balanced setting. Specifically, in the
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first one when all sentences of each category were used (All sentences), we can see that
orthographic errors are the best identified category while errors related to grammar and
lexicon are the most difficult to recognize. This seems to suggest that the representations
of erroneous and corrected sentences with grammatical and lexical errors and their
corresponding revisions are less distinguishable than those related to orthographic
errors. If we focus instead on the same results achieved in three-fold classification
but with the balanced datasets, we can observe that in the Balanced_1 configuration
the accuracy scores tend to decrease significantly, although they all remain above the
majority baseline. Moreover, we note that the distinction into three macro-categories
is no longer appreciable, since the scores obtained by the three probing classifiers are
more or less similar to each other. On the contrary, the ranking among the macro-
categories of errors in terms of classification accuracy is maintained when we balance
the datasets with respect to the two biggest macro-categories (Balanced_2). Namely,
sentences containing orthographic errors are, on average, easier to distinguish than
those containing grammatical ones. This seems confirming the intuition that the drop of
accuracy obtained with the Balanced_1 setting is possibly due to the very different size
of the Lexicon macro-category with respect to the categories including the other types
of errors. In addition, this outcome suggests that a more fine-grained investigation is
needed in order to investigate whether there is a ranking of BERT’s robustness in coping
with individual types of errors.

Thus, in order to deepen the investigation, Figure 10.2 reports the results of the third
experiment consisting in a binary classification task for each error type. To achieve
reliable results, we decided to consider only those types occurring in at least 64 sentences
in the input corpus, for a total of 15 types (see Table 10.2). In particular, Figure 10.2 (a)
shows the accuracy scores obtained considering all the sentences available for each of
the 15 types, while Figure 10.2 (b) presents the results achieved considering datasets that
contain the same amount of sentences (i.e. 64) for each typology. Despite the different
amount of input data, we can observe a quite similar trend of accuracy. The scores
achieved considering all the amount of sentences available for a specific error typology
are in line with those achieved with input data of smaller and comparable size, thus
suggesting that there are specific non-standard linguistic forms that BERT is always
more able to distinguish from the standard ones. This is confirmed by the rankings
reported in Table 10.3, where we compared the ordering of the considered types of error
by decreasing mean accuracy score, obtained considering the two experimental settings.

Similarly to what we observed in the previous experiments, in both rankings all types
of error belonging to the orthographic macro-category are ranked in the top list, while
the grammatical ones occupy the lower positions. Specifically, the top-ranked ones are
represented by the incorrect use of the adverbial monosyllabic word po’ (lit. ‘a little’)
(error code=232) and by the redundancy in the use of /4 (error code=222). For what
concerns the former, in the CIfA corpus po’ was erroneously written by learners without
the required apostrophe as in the following example:

Erroneous sentence (232): Dopo un po la volpe penso: "Dato che il leone ¢ indifeso me lo posso mangiare con
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Figure 10.2: Sentence-pairs probing scores for each BERT’s layer (rows) and according to the 15
considered types of error (columns). Average accuracy scores are also reported (rows and columns
AVG). Figure 10.2 (a) reports the results obtained considering all the sentences available for each
specific error typology, while Figure 10.2 (b) shows the results achieved with the balanced datasets,
i.e. containing a fixed number of sentences (64) for each error typology.

calma. [After a a bit the fox thought: “As the lion is helpless I can eat it with calm.”]

Corrected sentence: Dopo un po’ la volpe penso: "Dato che il leone e indifeso me lo posso mangiare con
calma. [After a a bit the fox thought: “As the lion is helpless I can eat it with calm.”]

For what concerns the latter, it should be noted that a redundant 4 may turn the
affected word into a different, but still existent, word of the Italian lexicon, which can
also belong to a different grammatical categories. This is exemplifies by the following
pair where the preposition a (‘at’) was erroneously written with a redundant 4, which
corresponds to the third singular person of the auxiliary verb avere (‘to have’):

Erroneous sentence (222): Ha casa abito con mia madre, mio padre e con mio fratello piit piccolo di me. [Has
home I live with my mom, my dad and my brother who is younger than me.]

Corrected sentence: A casa abito con mia madre, mio padre e con mio fratello piit piccolo di me. [At home 1
live with my mom, my dad and my brother who is younger than me.]
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All sentences Balanced datasets
Error code Mean score Error code Mean score
232 0.87 232 0.86
222 0.76 222 0.76
200 0.75 241 0.73
231 0.73 212 0.69
241 0.70 251 0.65
212 0.68 131 0.61
251 0.63 231 0.61
112 0.62 112 0.56
111 0.57 311 0.55
131 0.57 111 0.53
311 0.57 200 0.53
141 0.56 121 0.53
113 0.54 141 0.52
121 0.53 100 0.52
100 0.52 113 0.50

Table 10.3: Rankings of the best predicted error typologies according to the experiments performed with
all the sentences available for each error typology (column All sentences with the balanced datasets
(column Balanced datasets). The rankings are obtained averaging probing layer-wise scores, here
reported in column Mean score.

Quite high average classification scores are also achieved in the recognition of two
types of orthographic errors that are related to the po’ error, i.e. the erroneous use of the
apostrophe (error code=241) and of other monosyllabic words (error code=231). Both
of them are exemplified by the following pairs:

Erroneous sentence (241): C’¢ una ragazza che mi piace d’avvero. [lit. There’s a girl I r’eally like.)
Corrected sentence: C’¢ una ragazza che mi piace davvero. [There’s a girl I really like.]
Erroneous sentence (231): La volpe molto felice disse di si. [lit. The very happy fox said itself.)

Corrected sentence: La volpe molto felice disse di si. [The very happy fox said yes.]

On the one hand, the high performance shown by BERT in recognizing erroneous
sentences containing a misspelled po’ is probably related to the fact that this classification
scenario is potentially easier than other ones. In fact, the corresponding subset for this
error typology contains pairs of sentences where the error affects always the same word
and has only one possible correction, independently from the surrounding contextual
words. The same is true, although with a slightly higher variability, for other types of
monosyllabic words, for which the majority of examples in the corresponding subset
involves few words (such as e for ¢, i.e. the third singular form of the verb "to be").
On the other hand, it is interesting to note that the correct spelling of po’ and of other
monosyllabic words reflect an aspect of the Italian orthographic competence that is
quite difficult to master for high-school learners and seem to be persistent even at
higher level of education [Cignetti, 2011], as shown by studies on new forms of digital
writing [Antonelli, 2012]. Thus, the NLM’s abilities in discriminating these typologies of
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linguistic forms that deviate from the orthographic norm may suggest a distance between
BERT’s training set, mostly representative of formal writing, and student writings.

If we inspect the lower part of the two rankings we can find all errors belonging to
the grammatical macro-category. In particular, the erroneous subject-verb agreement
(error code=113), the incorrect use of articles (error code=141) and of prepositions
(error code=121) are the errors recognised with the lowest accuracy. On the contrary,
the incorrect use of verbal mood (error code=112) is the grammatical error that BERT is
most able to distinguish.

Despite the similar trend between the two rankings, there are two main exceptions
represented by the orthographic errors that do not belong to any specific class (error
code=200) and by the erroneous use of pronouns (error code=131). Namely, when
the classification is performed relying on datasets of comparable size for each type of
errors (Balanced datasets), BERT is less able to distinguish the erroneous/corrected the
miscellaneous type of orthographic errors, while is more able to distinguish erroneous
pronouns.

Similarly to what observed for the classification results reported in Figure 10.1,
Figure 10.2 (b) shows that the best scores are generally obtained around layers 7 and
9, while the average accuracy tends to decrease as far as the last layers are approached.
However, there are specific types of error for which top performances are not achieved in
the middle layer but rather in the first ones. This is for example the case of the erroneous
use of po’ (error code=232) for which the peak of accuracy is reached at layer 3, in both
experimental settings. Finally, we can observe that the drop of classification accuracy in
the last layers is particularly evident for the redundant use of & (error code=222).

10.7 How does BERT perceive learner errors?

Having observed that BERT, at least to a moderate extent, can implicitly detect the
presence of learner errors, although with differences among categories, we proceeded
to explore how the model encodes and represents these errors in its components. In
particular, we investigated how: (i) attention heads behave according to different typolo-
gies of learner errors; (ii) internal representations of erroneous and corrected sentences
differ from each other. For these experiments, we performed our analysis considering
all the 18 types of error, also including the types that were previously excluded in the
classification tasks.

10.7.1 Investigating Attention Heads

The analysis of the attention heads was carried out comparing how they individually
target erroneous and corrected tokens contained in the 18 sets of minimal edit pairs.
Specifically, for each sentence and for all the 12 heads and layers of the BERT model,
we measured the average attention attended to a token with a given category of error:
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Figure 10.3: Average attention values considering the pairs of erroneous (Errors) and corrected (Correc-
tions) sentences for each type of error.
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where s is a sentence in the CItA subset, a; ; is the attention from s; to s; for a specific
head/layer and ctg(s;) is the error category of the token s; (e.g. 111 (Use of tense)). We
then computed average attentions by taking the mean value over the whole dataset.

Figure 10.3 reports average attention values on different error types both considering
the set of corrected and erroneous sentences. Average scores were computed by aggregat-
ing all heads and all layers in the model. As we can see, BERT’s attention behaves quite
similarly across different error typologies, with few differences between the attention
values of the corrected and erroneous sentences. However, two main exceptions are
clearly visible and concern two orthographic errors, i.e. the erroneous use of po’ (error
code=232) and of the apostrophe (error code=241). In these two cases, BERT tends
to pay more attention to such tokens when observing their corrected form than the
erroneous one. As already observed in the classification task described in the previous
section, these are also two errors that BERT is particularly able to recognize. It should
be note that, even if they are considered two different types of errors according to the
CItA’s error annotation schema, they identify two aspects pointing to the same area of
the orthographic competence, which concerns the proper use of the apostrophe.

In order to deepen our analysis and to understand how BERT’s attention on learner
errors changes across layers, we reported in Figure 10.4 the average attention that each
BERT’s head attends to corrected (Corrections) and erroneous tokens (Errors) along its
12 layers. We found that the differences between attention heads that focus on Errors
and Corrections become more pronounced in the last layers of the model. In particular,
BERT starts to pay more attention to corrected tokens from layer 7. It is also interesting
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Figure 10.4: Average attention that each BERT’s head (points in the image) puts toward tokens containing
errors (Errors) or their corresponding corrections (Corrections) across its 12 layers.
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Figure 10.5: Layerwise attention a particular BERT head puts toward corrected (Errors) and erroneous
tokens (Corrections) containing grammatical, orthographic and lexical errors.

to notice that, although the difference between erroneous and corrected tokens is less
sharp in the early heads, layers 1-3 attend less to learner errors and attention tends to
decrease for both erroneous and corrected tokens. This seems to be in line with [Clark
et al., 2019], where the authors showed that early (and middle) heads tend to attend
more to special tokens (/CLS] and [SEP] than to any other type of token, being it
erroneous or correct. If we focus on the impact that the different types of errors have on
how BERT’s attention changes across layers (see Figure 10.5), we can observe that the
variation between attention values in sentences containing an erroneous and corrected
token is primarily due to orthographic errors. Our intuition is that this mostly concerns
the error types which were distinguished with the highest accuracy in the classification
experiments described in Section 10.6, i.e. the erroneous use of the monosyllable po’
and of the apostrophe, as well as the redundancy in the use of & (see Table 10.3). In
addition, as the Figure shows, there are some attention heads of corrected tokens that
have average values similar to the ones obtained for erroneous tokens and others that
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Figure 10.6: Layer-wise (rows) and head-wise (columns) p correlation scores between tokens with
errors and their corresponding corrected ones. Scores are reported by averaging p scores of tokens
containing grammatical, orthographic and lexical errors/corrections. AVG row reports average
correlations scores between layers. All correlations are statistically significant (p-value < 0.05).

Error Code Spearman Corr. Std  Error Code Spearmanr Corr. Std

161 0.84 0.06 111 0.72 0.11
162 0.80 0.11 112 0.70 0.17
141 0.80 0.10 311 0.65 0.12
113 0.80 0.07 232 0.64 0.21
251 0.76 0.07 212 0.63 0.12
121 0.75 0.10 222 0.63 0.14
100 0.74 0.09 200 0.62 0.12
231 0.73 0.07 134 0.56 0.15
131 0.72 0.12 241 0.34 0.34

Table 10.4: Spearman correlation scores between attention heads of tokens with errors and their
corresponding revisions for each error category. Scores are reported by averaging all attention heads
extracted from BERT’s output layer. All correlations are statistically significant (p-value < 0.05).

show a very different behaviour.

In order to investigate if there are attention heads and layers more involved in
such a variation, we computed Spearman correlation between the attention values of
corrected and erroneous tokens. Figure 10.6 shows layer-wise and head-wise Spearman
p scores between attention values of tokens containing errors and corrections for the
three macro-classes of grammar, orthography and lexicon. As quite expected since
in line with our previous findings, the highest correlation scores mainly concern the
Grammar macro-category, thus suggesting that BERT’s attention mechanism does
not perceive big differences between tokens containing grammatical errors and those
with their corresponding corrections. On the other hand, lower correlation scores on
orthographic errors confirm that differences between BERT heads focusing on spelling
errors/corrections are more pronounced, especially for what concerns attention values
extracted from middle to output layers. Interestingly, we found that low p values are
also observed in the early layers of the model (layers 2—4), regardless of the macro-class
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Figure 10.7: Cosine distances between BERT internal representations of corrected and erroneous
sentences and tokens across layers.

taken into consideration. Taking a closer look at the differences between attention values,
we found that there are some heads that are more affected by the presence of errors than
others and that this applies indiscriminately to grammatical, orthographic and lexical
errors. For instance, head 6 in layer 6 and head 10 in layer 8 exhibit lower average
correlations than the other heads extracted from the same layers of the model. We can
see this result in line with the findings of previous works [Clark et al., 2019], where
it has been observed that specific heads specialize to specific aspect of language, and
therefore not all attention heads are equally influenced by a specific phenomenon, such
as the occurrence of an erroneous token.

Results reported in Table 10.4 allow focusing this analysis on specific types of
error. Namely, the table reports the Spearman correlation scores computed between
the attention values of corrected and erroneous tokens, only for the output layer. As
expected, variations of attention heads seem to generally reflect the distinction in the
three macro-categories that we noticed in the previous experiments. In fact, with the
exception of the incorrect use of relative pronouns (error code=134), of capital letter
(error code=251) and of monosyllabic words (error code=231), the typologies that
exhibit lower correlations are those related to orthographic and lexical errors, while
grammatical ones show strong Spearman scores (> 0.70). In fact, we can observe that
tokens containing an incorrect use of the apostrophe and their corresponding revision
(error code=241) are those most differently attended (p = 0.34), while BERT tends
to give the most similar attention to corrected and erroneous tokens implying four
grammatical errors, i.e. the incorrect gender and number agreement of nouns (error
code=161 and 162), the incorrect Subject-Verb agreement (error code=113) and the
incorrect use of articles (error code=141).
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10.7.2 Investigating representations

As a further interpretation methodology, we studied how BERT encodes learner errors
within its internal representations and across its layers both at sentence and token level.
To do so, we computed the cosine distances between the internal representations ex-
tracted from corrected and erroneous sentences (cos(E, C)) according to the 18 different
typologies of errors. As in the probing experiments (see Section 10.6), we relied on
the activation of the [CLS] token to obtain sentence-level representations. Moreover,
to verify the actual impact of specific errors on BERT representations, we measured
also the cosine distance between embeddings of the erroneous and corrected tokens.
Figure 10.7 reports layer-wise cosine distances between sentence- and token-level in-
ternal representations extracted from corrected and erroneous sentences/tokens. The
scores were computed by averaging the cosine distances of the three macro-classes of
grammatical, orthographic and lexical errors. As regards distances computed consid-
ering sentence-level representations, we can observe that they become more marked
as we approach the output of the model (from layer 7 to 12). This is in line with
the higher scores obtained in the sentence-pair classification task (see Section 10.6),
where we observed that BERT’s abilities to distinguish an erroneous sentence from its
corresponding correction increases in the intermediate layers. Nevertheless, average
distance scores are quite low, probably because the embeddings extracted using the
activation of the [CLS] token tend to mitigate the effect of the error within BERT’s
internal representations. In contrast, cosine distances computed with the token-level
embeddings are more pronounced (from 0.10 to 0.53). This is quite expected, since
differences between representations are assessed relying on the exact tokens that tend to
vary in each sentence. It is also interesting to notice that the variation of the token-based
cosine distances across layers shows an opposite trend with respect to the sentence-
based representations extracted using the [CLS] token. That is, differences between
corrected and erroneous tokens are more pronounced in the early layers of the model
and then decrease toward the output, although another peak is reached at layer 7. This
trend is similar to that observed with differences between attention heads in the early
layers of the model (Figure 10.5). On the contrary, from layer 7 onward the two trends
tend to diverge. Specifically, heads of corrected and uncorrected tokens became more
pronounced in the last layers of BERT while token-level representations tend to be more
similar. Our intuition is that, despite the presence of an error, in the last layers BERT
tends to capture in its internal representations the meaning of a word more accurately as
the output layer is approached. Thus, the encoding of a token with or without a specific
learner error in the last layers of the model will not significantly alter the associated
representation. As regards differences between the three macro-categories of errors,
we observe that orthographic errors are, in general, those that contribute more to the
variation between representations. Despite this, we can notice that cosine distances
calculated between the embeddings at token level in the first 6 layers are slightly more
pronounced for tokens belonging to the Lexicon category. This might represent a further
evidence that BERT already has the linguistic competence to model the semantics of
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Figure 10.8: Cosine distances between BERT internal representations of erroneous and corrected tokens
for all error categories across layers.

Code Slope r-value Code Slope r-value
311 % -0.029 -0.92 134* -0.019 -0.76
222*%  -0.028  -0.86 111 * -0.018 -0.84
231* -0.027 -0.89 113* -0.014 -0.84
212*% -0.025 -0.88 251* -0.014 -0.84
121* -0.024 -091 141 * -0.014  -0.80
200 * -0.024  -0.87 161 * -0.014 -0.89
112* -0.023  -0.90 162* -0.011  -0.85
131 % -0.023 -0.89 232 -0.001  -0.06
100 * -0.021  -0.87 241 0.000  -0.01

Table 10.5: Ranking of the error types according to decreasing slope of the regression lines. Correlation
coefficients are also reported (r-value). Statistically significant scores (p-value > 0.05) are marked
with *.

tokens also when misused.

The last part of this investigation about BERT’s internal representations goes more in
detail and it is devoted to assess the impact of the different types of considered errors.
Specifically, Figure 10.8 shows cosine distances between representations of corrected
and erroneous tokens for all the 18 error typologies. As we can observe, despite the
increase of similarity between word representations across BERT’s 12 layers, there are
some typologies of error that exhibit different trends. This is the case, for instance,
of the erroneous use of po’ (error code=232) and of the apostrophe (error code=241),
which both show an increase in cosine distance between representations from seventh to
output layer. There are also some types of error that follow the main trend but whose
distance between erroneous and corrected representations is extremely high at the first
layer. Nevertheless, the distance narrows in the output layer becoming similar to that
of the other types. This is for example the case of two orthographic errors, e.g. the
redundant use of & (error code=222) and of double consonants (error code=212), and of
the erroneous use of lexicon (error code=311).
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cos(E,C) cos(E,C) cos(E,C) cos(E,C)
Code (Sentence) (Token) Code (Sentence) (Token)
241 0.14+0.11 0304+0.10 222 0.02+0.03 0.20 + 0.07
232 0.134+0.11 0304+0.05 100 0.02+0.04 0.16 +0.07
111 0.04 £0.05 0.15+0.05 131 0.02+0.04 0.14 +0.06
200 0.03 £0.05 0.20 +£0.09 113 0.024+0.04 0.134£0.06
251 0.034+0.04 0.154+0.09 112 0.01 +£0.03 0.13 +0.07
311 0.03+0.06 0.174+0.08 134 0.01 £0.01 0.19 +0.06
212 0.03+0.05 021+0.09 121 0.01 £0.02 0.15+0.05
231 0.03£0.04 0.184+0.09 162 0.01 £0.01 0.11 +0.06
141 0.024+0.07 0.13 £0.07 161 0.01 £0.01 0.10 4 0.04

Table 10.6: Cosine distances (cos(E,C)) between representations of sentences/tokens with errors and
their corresponding corrected versions. Cosine distances are reported for the internal representations
extracted from the output layer (layer 12).

To further investigate these trends, we computed the slopes of a linear regression line
between BERT layers and the cosine distances of corrected and erroneous token represen-
tations for each error type. Table 10.5 reports the ranking of error typologies according
to decreasing slope values. As it can be noted, error types whose erroneous/corrected
representation distances are higher in the first layer show higher values. This suggests
that at the beginning BERT i1s highly sensitive to the difference between the non-standard
and standard form, but it rapidly becomes able to cope with the non-standard form thus
generating token-level representations more similar the standard ones. In the top part
of the ranking we can find the erroneous use of lexicon (error code=311) and three
orthographic errors (i.e. the redundant use of 4, the erroneous use of monosyllabic words
and the redundant use of double consonants), while the erroneous use of prepositions
(error code=121) is the grammatical error whose representations become more rapidly
similar to the corresponding standard ones. On the contrary, error types characterised
by a small distance between the erroneous and corrected representations in the first
layers are located in the lower part of the ranking. This is the case of three grammatical
errors that BERT perceives more similar to the corresponding standard forms, i.e. the
erroneous number and gender agreement of nouns (error code=162 and 161) and the
use of articles (error code=141), while the orthographic error type with the lowest slope
value concerns the use of the capital letter (error code=251). Interestingly enough, the
two orthographic errors BERT is more able to classify, i.e. the erroneous spelling of
the monosyllable po’ (error code=231) and the erroneous use of the apostrophe (error
code=241), show not significant values.

If we focus the analysis on the output layer, we can observe that the impact of
the different types of errors changes according to the level (sentence or token) from
which the representations are extracted. The results of this investigation are shown in
Table 10.6 that reports the cosine distances between sentence- and token-level internal
representations of corrected and erroneous sentences (cos(E, C)) for each of the different
18 error typologies computed on the output layer, and =+ the standard deviation.

As expected by inspecting the trend reported in Figure 10.7, distances between er-
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roneous/corrected representations at token level are higher than the distances between
representations extracted at sentence level. However, it can be observed that most error
types are similarly ordered by decreasing cosine distance: for example, the represen-
tations of the erroneous use of the apostrophe (error code=241) and of the erroneous
spelling of the monosyllable po’ (error code=232) have the main cosine distance both
at the sentence and at token level, while the representations of the erroneous number
and gender agreement of nouns (error code=162 and 161) are the most similar ones in
both cases. The main exceptions of this ranking concern the incorrect use of % (error
code=222), of relative pronouns (error code=134) and of prepositions (error code=121),
for which high cosine distances obtained at token-level representations do not corre-
spond to the same high distance at sentence level. On the contrary, an opposite trend
can be observed for the incorrect us of capital letters (error code=251), of articles (error
code=141) and verb tenses (error code=111). In these cases, sentence-level representa-
tions of erroneous and corrected forms are more highly ranked than those that those at
token-level, suggesting that BERT is more able to perceive as similar the standard and
non-standard form when the single token is considered instead of the whole sentence.

If we move to a qualitative analysis and we look more closely at individual occur-
rences of learner errors within our CItA subset, we can notice that, regardless of the
category taken into account, there are specific cases that affect more strongly BERT’s
internal representations extracted at sentence level. For instance, considering the er-
roneous use of the apostrophe, the cosine distance between the two sentences in the
following pair is 0.50:

Erroneous sentence (241): Perché c¢’e I’abbiamo. [lit. Because there is we have.]

Corrected sentence: Perché ce I’abbiamo [Because we have it.]

This is significantly higher than the distance between the representations of the two
sentences contained in the following minimal edit pair, i.e. 0.08:
Erroneous sentence (241): Vedo un ombra gigante. [lit. I see an giant shadow.]

Corrected sentence: Vedo un’ ombra gigante. [1 see a giant shadow.]

This is probably due to the fact that the erroneous use of the apostrophe can lead,
in many cases, to a complete distortion of the original meaning of the sentence. In
particular, the incorrect use of the clitic pronoun "c¢’" erroneously written in conjunction
with the verb "é" (‘is’) in an existential construction may have led BERT to consider
it as the main verb of the sentence instead of "abbiamo", thus distorting the whole
sentence representation. Similarly, the erroneous use of the article (error code=141) in
the following sentence pair yields to cosine distance of 0.11 between the erroneous and
corrected sentence:

Erroneous sentence (141): Oltre tutto Uindustrie vengono costruite anche in zone dove distruggono 1’ equilibrio
naturale. [lit. Besides all, th’ industries are built in areas where they destroy the natural balance.]

Corrected sentence: Oltre tutto le industrie vengono costruite anche in zone dove distruggono 1’ equilibrio
naturale. [Besides all, the industries are built in areas where they destroy the natural balance.]

On the contrary, the distance between the sentence-level representations of the two
following sentences containing the same error type is dramatically lower, i.e. 0.0003:

164



10.8. How do learner errors affect BERT’s linguistic knowledge?

Erroneous sentence (141): Le gambe mi tremano come dei stuzzichini. [lit. My legs are shaking like some
sticks.]

Corrected sentence: Le gambe mi tremano come degli stuzzichini. [My legs are shaking like some sticks.]

In this case, the erroneous use of the partitive article dei in dei stuzzichini is more
acceptable, since dei is a variant of the required form degli in agreement with masculine
nouns. It follows that this erroneous form may have been frequently observed by BERT
during the training phase. On the contrary, the elided form of the feminine article (I’
instead of le) is allowed only in agreement with singular nouns.

The examples reported in this short qualitative analysis suggest that there are specific
instances of error that significantly alter BERT’s internal representations of the whole
sentence. Thus, it could be the case that specific instances have a negative impact on the
linguistic competence of the model, such as we hypothesized in the example concerning
the erroneous use of the apostrophe in the spelling of the clitic pronoun ce. Our intuition
is that in this case the model is not able to recognise that, in this specific context, the
form c’e is a clitic pronoun but in a misspelled form with the apostrophe, since the
erroneous form is an homograph of the verb "é" (‘is’) in the existential construction.
This might have yielded a representation of the sentence containing the erroneous form
quite distant from the representation of the corrected sentence. In order to investigate
whether and to which extent the considered types of error negatively affect BERT’s
ability to encode the linguistic information of a sentence, we carried out further probing
tasks described in the following section.

10.8 How do learner errors affect BERT’s linguistic knowledge?

In this last section, we investigate how BERT’s ability to encode the linguistic infor-
mation of a sentence changes between sentences containing standard and non-standard
linguistic forms. For this purpose, we defined a probing model (LinearSVR) that takes
as input layer-wise BERT sentence-level representations (i.e. [CLS] token) and outputs
the actual value of a specific linguistic feature of the sentence. We relied on 15 differ-
ent probing features, which were acquired from raw and morpho-syntactic levels of
linguistic annotation. In particular, we tested BERT’s ability to encode sentence length
(sentence_length) and average word length (char_per_tok), as well as the distribution
of the main Parts-of-Speech occurring in our CItA subset (e.g. NOUN, VERB, PUNCT,
DET, etc.). Linguistic annotation were performed using Stanza* [Qi et al., 2020]. In or-
der to verify the impact of specific typologies of errors on BERT’s linguistic competence,
we trained the LinearSVR model on 15.116 sentences of the CItA corpus without learner
errors and then tested it on the 18 datasets of minimal edit pairs previously defined, i.e.
datasets containing only one error typology at a time, and its corresponding corrected
counterpart. The hypothesis we want to test is that if the model representations extracted
from the erroneous sentence are similar to those extracted from the corrected one, the
values of the linguistic features should be similar as well. For example, our intuition

“https://stanfordnlp.github.io/stanza/
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Figure 10.9: Layer-wise probing scores (p correlations) for each probing feature obtained with LinearSVR
tested on [CLS] representations of all the corrected sentences. Baseline scores are also reported (row
B).

is that as far as BERT is robust to non-standard forms, it should be able to recognize
that the form ce is a clitic pronoun given the context in which it appears, even when it
is erroneously written with a redundant apostrophe, i.e. c’e. As evaluation metric, we
used Spearman correlation (p) between the values of linguistic features extracted from
corrected sentences and the values predicted using BERT’s representations extracted
from the erroneous and corrected sentences, respectively.

First, in order to inspect BERT’s competence in encoding our set of linguistic fea-
tures, we report in Figure 10.9 the probing results (in terms of Spearman correlation)
obtained for each linguistic task relying on the LinearSVR model tested on the rep-
resentations of all the corrected sentences. We report also the results obtained with a
baseline corresponding to a LinearSVR model trained using only sentence length as
input feature (row B in the Figure). Apart from sent_length, we can clearly observe
that the scores obtained with BERT internal representations greatly outperform the ones
obtained with the sentence length baseline, thus suggesting that the model is capable
of implicitly encoding our set of linguistic features. Moreover, we notice that BERT’s
linguistic competence tends to decrease across its 12 layers, as we already noticed in the
experiments devised in Chapter 8.

In Figure 10.10 we compare these probing scores with those extracted from the
erroneous sentences. Specifically, we report layer-wise scores obtained for all the
linguistic features according to the three macro-classes of errors: Grammar, Orthography
and Lexicon. As we can notice, the most noticeable differences are related to the
presence of grammatical and orthographic errors, while lexical errors do not seem
to affect BERT’s ability to correctly encode our probed linguistic features. This is
quite expected since a lexical error, differently from an orthographic and especially a
grammatical one, is expected to have a minor impact on the overall sentence structure
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Figure 10.10: Layer-wise probing scores (p correlations) for all linguistic tasks according to the three
macro-groups of Grammar, Orthography and Lexicon.

and, consequently, on the prediction of the average score of our probing features. This
is shown, for instance, by the following sentence pair, where the lexical error concerns
the use of the adjective costante (constant, invariant), which is improperly used by the
learner with the meaning of another word, yet still an adjective, i.e. aderente (compliant,
appropriate).
Erroneous sentence (311): Devi cercare di rimanere il piit costante possibile alla traccia. [lit. You should try
to be as much constant as possible with the prompt topic.]
Corrected sentence: Devi cercare di rimanere il piu aderente possibile alla traccia. [ You should try to be as
much compliant as possible with the prompt topic.]

Interestingly, as the last layers are approached (layers 10-12), the differences between
probing scores obtained with corrected and erroneous sentence representations become
much less pronounced. This shows that, regardless of the ability to solve a specific
probing task, BERT tends to assimilate these representations possibly becoming more
robust to students’ errors.

Focusing more specifically our analysis on the impact of standard and non-standard
forms on BERT’s linguistic competence, we report in Figure 10.11 the average differ-
ences between probing scores obtained with [CLS] representations of corrected and
erroneous sentences for the 11 classes of errors previously defined (see column 1 in
Table 10.1, Sec. 10.4) and characterized by the linguistic units involved in the errors.
As we can see, the two classes for which in the output layer the impact of non-standard
forms is higher are represented by two orthographic errors, i.e. the erroneous misspelling
of monosyllables and the erroneous use of the apostrophe. It means that BERT, using the
representations extracted from the erroneous sentence, is less able to encode the raw and
morpho-syntactic information of the corrected version of the sentence. On the contrary,
the erroneous use of vocabulary and of prepositions, pronouns and articles are the classes
of errors which impact less on the probing scores. For what concerns lexical errors, our
intuition is that the inappropriate use of a single word does not negatively affect the
accurate recognition of all the considered linguistic features, possibly with the exception
of the correct prediction of word length. For what concerns grammatical errors due to the
incorrect use of words belonging to closed lexical categories, i.e. prepositions, pronouns
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Figure 10.12: Average differences (absolute values) between probing scores obtained with [CLS] repre-

sentations of corrected and erroneous sentences for the 15 linguistic features. Scores are reported by
averaging the results of the three macro-categories of errors. Bold numbers in parentheses correspond
to the ranking of each linguistic feature in terms of decreasing differences computed on the output
layer (layer 12).

and articles,

it may be the case that these categories do not have much impact on [CLS]

representations. However, when the results within internal layers are considered, we
noticed an exception among errors involving a closed lexical category. Namely, the
incorrect use of pronouns shows a quite peculiar trend, in that the differences between
probing scores obtained using BERT’s representation extracted from the first layer up to
the ninth one are much higher that the differences in the last layers. This may suggest
that the erroneous use of a pronoun may distort BERT’s representation of the whole
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Figure 10.13: Differences between probing scores obtained with sentence representations with and
without specific learner errors.

sentence and the model needs to achieve a deep knowledge of the sentence in order to
correctly predict the underlying linguistic information.

Figure 10.12 reports the results of a complementary investigation. It shows the aver-
age differences between probing scores obtained with [CLS] representations extracted
from the corrected and erroneous sentences for the 15 linguistic features. As we can
observe by inspecting the different rankings of features across the three macro-categories
of grammatical, orthographic and lexical errors, sent_length represents the only probing
feature that does not vary also across layers. It means that BERT keeps this competence
regardless of the presence of a non-standard form in the sentence. On the contrary, the
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impact of errors on all the other linguistic features depends on the macro-category taken
into account. As a general remark, it appears that orthographic errors represent the
macro-category that mostly influences BERT’s linguistic abilities. This is in line with
what we observed in Section 10.7.2, where we showed how the cosine distance between
the representations extracted from the erroneous and corrected sentences is higher as far
as the orthographic errors are concerned, both at sentence and token levels, especially in
the last layers (see Figure 10.8). In fact, the last layer of the Orthography heatmap is
characterised by higher average differences between probing scores which correspond to
an higher number of darker cells in the heatmap. In particular, coordinating conjunctions
(CCONJ), verbs (VERB) and adverbs (ADV) are the linguistic features whose recog-
nition is mostly affected by orthographic errors. On the contrary, grammatical errors
mostly affect the correct identification of auxiliary verbs (AUX), adverbs and nouns. For
what concerns the non-standard use of lexicon, BERT’s linguistic abilities decreases in
particular in the identification of adpositions (ADP), determiners (DET) and pronouns
(PRON).

In Figure 10.13 we report for each linguistic probing task the layer-wise differences
between probing scores obtained with the representations extracted from corrected
and erroneous sentences for the 11 classes of error. As we can observe, differences
between probing scores are mostly positive, thus suggesting that the identification of the
linguistic features starting from the representations extracted from corrected sentences
is more accurate than those extracted from the erroneous sentences. Nevertheless, these
differences tend to become less pronounced as the output layer is approached. This
seems to confirm the fact that, regardless of the error typology taken into consideration,
BERT becomes progressively more robust to cope with non-standard linguistic forms.
For instance, although the incorrect use of 4 or of verbs (either in terms of tense, mood or
subject-verb agreement) compromises BERT’s ability to correctly predict the distribution
of auxiliaries (AUX) and prepositions (ADP) in the early layers, the presence of these
specific error typologies becomes less important in the output layers of the model. For
example, in the following sentence:

Erroneous sentence (222): Carlo era bravo ha nascondersi infatti nessuno riusciva a vederlo. [lit. Carlo was
good has hiding, in fact no one could see him.]

Corrected sentence: Carlo era bravo a nascondersi infatti nessuno riusciva a vederlo. [Carlo was good at
hiding, in fact no one could see him.]

we observe that the use of the & before the a preposition (lit. has) led BERT to
incorrectly identify the token as an auxiliary verb (have). Nevertheless, this behaviour
is more pronounced in the early layers compared to the output ones (err_diff° is 0.063,
0.048 and 0.006 in layers 1, 6 and 12 respectively.) As expected, the erroneous use
of h has a major effect also on the correct prediction of the average distribution of
prepositions (ADP). In fact, we can note that it is among the top error for which there is
a great difference, in terms of err_diff, between the representation extracted from the

Serr_diff has been computed as corrected_diff - erroneous_diff, where corrected_diff and erroneous_diff correspond to the
difference between the feature value (e.g. distribution of auxiliaries) and the value predicted by the probing model tested on the
corrected and erroneous sentences respectively.
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Features Class of errors  Slope r-value
CCONJ  Monosyllabes -0.017 -0.80
ADP Use of h -0.014 -0.81
ADP Pronouns -0.011 -0.82
PROPN  Capital letter -0.010 -0.82
PRON Monosyllabes -0.009 -0.85

SCONJ Pronouns -0.008 -0.81
NOUN Use of h -0.008 -0.65
AUX Use of h -0.008 -0.58
SCON]J Apostrophe -0.007 -0.77

VERB Monosyllabes -0.007 -0.69
PROPN  Monosyllabes -0.006 -0.63

ADV Apostrophe -0.006 -0.66
CCONJ  Apostrophe -0.006 -0.64
SCONIJ Monosyllabes -0.006 -0.74
ADJ Monosyllabes -0.006 -0.60
VERB Nouns -0.006 -0.87
VERB Lexicon -0.006 -0.87
ADV Monosyllabes -0.005 -0.78
DET Monosyllabes -0.005 -0.61
DET Pronouns -0.005 -0.72

Table 10.7: Ranking of the top 20 probing features and corresponding class of error according to
decreasing slope of the regression lines. Correlation coefficients are also reported (r-value).

corrected and erroneous sentence. Once again, this effect becomes less pronounced in
the output layer.

Other interesting examples concern the incorrect use of the apostrophe and of the
capital letter, which have an effect, especially in the early layers, on the prediction of the
average distribution of pronouns (PRON) and proper nouns (PROPN), respectively. For
what concerns the former, the following pair shows how a missing apostrophe, which is
required between the elided form of the clitic pronoun ci and the imperfect tense of the
verb essere (to be), affects BERT’s ability to predict the average distribution of pronouns
in the sentence.

Erroneous sentence (241): Non cerano piit i telefoni, non cerano gli orologi che chiamavano e facevano gli

ologrammi. [lit. [They don’t] wax anymore phones, [they don’t] wax anymore watches calling and they
were making holograms.]

Corrected sentence: Non c’erano piu i telefoni, non c¢’erano gli orologi che chiamavano e facevano gli
ologrammi.[There were no more phones, there were no watches calling and they were making holograms.]

For what concerns the latter, the incorrect use of the capital letter plays an important
role in the prediction of proper nouns’ distribution (PROPN), as in:

Erroneous sentence (251): La bambina si chiama sara. [lit. The child’s name is sara.]

Corrected sentence: La bambina si chiama Sara. [The child’s name is Sara.]

Focusing more specifically on the variation across layers, we can observe that the dif-
ferences between probing scores obtained with corrected and erroneous representations
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tend to decrease for most of the tested probing features. Specifically, of a total of 165
probing classifiers, about 58% show a decrease in the difference between accuracy scores
achieved in the first and last layers of BERT, thus again suggesting its robustness against
non-standard linguistic forms. Moreover, we notice that there are some cases for which
the increase of robustness by BERT is constant across its 12 layers. In order to deeply
investigate these trends, we computed the slopes of a linear regression line between
BERT layers and the differences between the corrected and erroneous probing scores for
each linguistic feature and class of error. Table 10.7 reports top 20 probing features and
classes of error BERT becomes more rapidly able to cope with across layers, ordered
according to decreasing slope values. In most cases, they correspond to the linguistic
competences that, when a specific class of error appears in a sentence, the model tends
to lose in the first layers but that it acquires more rapidly and constantly across layers
tending toward the linguistic knowledge that it has on the corrected sentences. This is
for example the case of the incorrect use of 4 and of pronouns for which the differences
between the probing scores obtained from erroneous and corrected representations are
higher in the first layers but tend to rapidly decrease, as we already noted in Figure 10.11.
A quite odd trend, instead, is represented by the erroneous spelling of monosyllables
(they appear 8 times in Table 10.7), for which BERT’s linguistic competences are nega-
tively affected in the first layers, then rapidly increase across layers, but in the last layer
this class of error goes back to negatively affect the model’s competence. Interestingly,
we already observed the same trend in Figure 10.8, when we compared the internal
BERT’s representations in terms of cosine distance.

Despite this trend, there are still some exceptions. A visible one is represented by the
trend of the class of errors involving the misuse of verbs. As Figures 10.11 and 10.13
show, the differences concerning this type of errors tend to be quite stable across the
12 layers, thus demonstrating that the linguistic knowledge about verbs has the same
impact on the layer-wise representations.

10.9 Discussion

One of the most lively research field in current NLP work is devoted to analyzing
and interpreting the underlying mechanisms of deep networks taking insights from
interdisciplinary perspectives going from machine learning, psychology, linguistics, and
neuroscience. The in-depth linguistic investigation presented in this paper goes in this
direction and has pursued this objective by testing the robustness of one of the most
prominent NLM, i.e. BERT, against non-standard forms emerging in authentic texts.
We deeply inspected BERT’s behaviour through distinct interpretation strategies which,
all together, have revealed the existence of regularities in how BERT handles linguistic
errors despite the inherent ‘black box’ nature of the model. First of all, we observed
that the presence of an error in the sentence has always an effect, which emerges in
a classification scenario, as well as when the model’s attention heads and internal
representations were considered. Nevertheless, we also noticed that not all errors impact
in the same way. In particular, BERT appears to be more sensitive to orthographic errors
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with respect to grammatical ones and, even less, to errors affecting the use of lexicon.
This was shown in Section 10.6, where we reported a higher classification performance
in discriminating pairs of sentences containing orthographic errors; in Section 10.7.1,
where we observed that the variation between average attention values in sentences
containing an erroneous and corrected token is primarily due to orthographic errors,
and in Section 10.7.2, where we showed that orthographic errors are, in general, those
that contribute more to the variation, measured in terms of cosine distances between
representations extracted from sentences containing a corrected or an erroneous linguistic
form.

By exploiting the internal subdivision of errors for each macro-category available in
the CItA corpus, we were able to provide a more accurate picture of the effect of errors
of different nature on the model’s robustness. For instance, if in general orthographic
errors turned out to be the ones with the strongest impact, not all errors of this class play
the same role. In particular, our data emphasize the existence of an internal hierarchy,
with some errors such as the misspelling of the monosyllabic word po’ and the incorrect
use of the apostrophe occurring in the top-ranked positions. Interestingly, this kind of
errors represent an area of the Italian written competence which is quite difficult to
master not only for younger learners but also for adult writers [Serianni, 1989].

However, when the model’s internal representations are considered, we observed
that the degree of variation between representations extracted from correct and incor-
rect sentences is different according to token-based or sentence-based representations.
Namely, the former are more pronounced especially in the earlier layers but they also
tend to converge rapidly. This trend may explain also why the best layers for identi-
fying the presence of a learner error are the ones between layers 7 and 9, as showed
in the classification results of Section 10.6. This is also in line with results reported
by [Yin et al., 2020] in their study. Again, the type of error differently impacts on this
process: errors that give rise to a greater distance between the erroneous and corrected
representations in the first layers are also the ones for which the model generates a
representation converging to the correct standard one in more rapid way. It is the case of
errors concerning the use of lexicon but also of some orthographic errors such as the
redundant use of 4 and of double consonants and the erroneous use of monosyllabic
words. On the contrary, sentence-level representations based on the activation of the
[CLS] token do not diverge too much, suggesting that the model is able to incorporate
the error when generating a representation of the whole sentence.

In spite of the reported small variations between correct and incorrect sentence-
level representations, when BERT’s linguistic competences are probed using these
representations, the impact of errors is visible. Also from this perspective, the model’s
robustness turns out to be differently affected by the specific type of error occurring in
the sentence and by the specific layer from which the sentence-level representation is
extracted. Generally speaking, as shown in Figure 10.10, BERT’s ability to properly
encode a set of properties related to superficial and morpho-syntactic information of
a sentence is more affected by the presence of orthographic and grammatical errors,
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while lexical errors are rather harmless. However, as the output layer is approached, the
model becomes progressively more robust to cope with non-standard linguistic forms
regardless of the error typology occurring in the sentence.

As for all our previous experiments, also in the evaluation of BERT’s linguistic
competence, the fine-grained analysis focused on the specific type of error within each
macro-category allowed us to find interesting trends. For instance, comparing the
results obtained using the output layer representations (Figure 10.11), the misspelling of
monosyllables and the erroneous use of apostrophe turned out to be the two classes of
orthographic errors for which the impact of non-standard forms is greater. This confirms
our expectations that errors that impact more are those that may potentially affect the
overall sentence structure, such as the misuse of an apostrophe, which not only alters
the spelling of the affected token but may also change the corresponding POS, with a
possible propagation of the error to other tokens of the sentence. On the contrary, at
grammatical level, we found a distinction between errors affecting tokens belonging
to open and closed lexical categories. In particular, the misuse of verb (in terms of a
wrong use of tense and number features) has a quite prominent effect that holds across
all layers, thus showing that BERT is scarcely robust to cope with this type of error. On
the contrary, errors related to the closed lexical categories (i.e. prepositions, pronouns
and articles) show a weak impact although with some different behavior. For instance,
while errors involving articles and prepositions do not have impact from the first layers,
errors concerning pronouns are the only closed class category showing an adverse effect
from the first up to (at least) the ninth layer, suggesting that the model needs to achieve
a deep knowledge of the sentence in order to mitigate the effect of a wrong pronoun
and correctly predict the underlying linguistic information. This behaviour might also
explain the reason why while articles and prepositions show high correlation values
between attention heads of corrected and erroneous tokens (see Table 10.4), on the
contrary for what concerns the erroneous use of relative pronouns we observe very low
correlations. Our intuition is that BERT has to attend to other tokens in the sentence in
order to cope with the presence of this specific error.

With findings reported in Figures 10.12 and 10.13 we tried to achieve a deeper
understanding of the relationship between each type of error and the specific phenomenon
of BERT’s linguistic competence affected. In particular, we showed that the presence of
orthographic and grammatical errors negatively influences the correct prediction of all
our probing features. Specifically, the former has an effect on coordinating conjunctions,
verbs and adverbs, while the latter on auxiliary verbs, adverbs and nouns. Vocabulary-
based errors instead tend to affect only functional POS, such as prepositions, determiners
and pronouns. Once again, this overall effect becomes less pronounced as we approach
the output layer.
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Conclusions

In this thesis, we have investigated different approaches in order to interpret the in-
ner mechanisms of state-of-the-art NLMs and to understand the amount of linguistic
knowledge implicitly encoded by Transformer-based models. In particular, we verified
whether exploiting a profiling approach to study human linguistic competence and, more
specifically, the process of written language evolution could provide important insights
about the linguistic knowledge encoded (and used) by these neural models.

In the first part of the thesis, we defined an NLP-based stylometric approach to model
the evolution of written language competence in L1 and L2 learners. In particular,
relying on a wide set of linguistically motivated features extracted from the students’
essays contained in two longitudinal corpora of Italian L1 and Spanish L2 learners, we
showed that it is possible to automatically predict the chronological order of two essays
written by the same student, especially at more distant temporal spans. Moreover, we
have highlighted that our set of linguistic features can be also exploited to investigate
the typologies of language phenomena that contribute more to the prediction task and
how they change according to different temporal spans. In fact, experiments devised on
the CItA corpus showed that morpho-syntactic properties, and especially those related to
grammatical categories and to the inflectional properties of verbs, play an important role
in the classification task as the temporal span between two essays increases. Similarly,
features related to the errors made by the students become more important when larger
temporal intervals are taken into account. For what concerns instead the experiments
devised on the COWS-L2H corpus, we found that the linguistic features that are most
important in the predicting task often reflect the explicit instructions that students receive
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during each course (e.g. features related to verbal morphology for the introductory
courses).

Starting from the assumption that our profiling approach provided us with important
insights about the process of evolution of written language competence and, more
importantly, about the most relevant morphosyntactic and syntactic properties at different
time intervals, in the second part of the thesis we decided to apply a similar methodology
in order to study the implicit linguistic competence of recent Transformer-based models.
We first proposed a suite of probing tasks based on our set of linguistic features in
order to investigate the amount of linguistic knowledge stored in several pre-trained
NLMSs, mostly based on the BERT architecture. Results showed that English and Italian
pre-trained models are able to encode a wide amount of linguistic proprieties across
their layers, although this implicit competence tends to decrease as the output layer
(i.e. the layer that is more close to the pre-training objective) is approached. Focusing
exclusively on the BERT architecture, we showed that, differently from a non-contextual
model (word2vec), BERT sentence-level representations perform better at encoding
features related to the raw and syntactic structure of a sentence and that this information
is also preserved in the embeddings of individual words. Moreover, fine-tuning BERT
on the Native Language Identification task we found that, despite the model tends to
lose its precision in encoding our set of features, the ability to solve the downstream task
is related to its ability in storing linguistic knowledge.

Then, we further investigated the linguistic competence of pre-trained Transformer
models proposing two complementary studies aimed at understanding the relationship
between linguistic generalization abilities and perplexity scores. In our first work, the
relationship between BERT and GPT-2 PPLs and our set of linguistic features was
comparatively assessed. Specifically, training a linear regression model to predict PPL
scores, we showed that our features are able to model aspects involved in NLM’s
perplexity, and that this is true especially for GPT-2. Moreover, we found that the
properties that are more involved in the PPL of the two models correspond to the lexical
density, the presence of pronouns and verbs. In the follow-up study, we examined
whether PPL is affected by the same linguistic phenomena used to automatically assess
sentence readability and if there is a correlation between the two metrics. Our findings
suggested that this correlation is actually quite weak and the two metrics are affected by
different linguistic phenomena.

Moving instead on the framework of studies related to the assessment of NLMs
ability on targeted diagnostic tests, we built a new evaluation resource for Italian aimed
at assessing the role of textual connectives in the comprehension of the meaning of a
sentence. The resource was arranged in two sections (acceptability assessment and cloze
test), each one corresponding to a distinct challenge task conceived to test how subtle
modifications involving connectives in real usage sentences influence the perceived
acceptability of the sentence by native speakers NLMs. Preliminary findings showed
that BERT and GPT-2 often are capable of distinguishing between acceptable and
unacceptable sentences, thus suggesting their ability to understand sentence meaning
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within their internal mechanisms.

In the last part of the thesis, we introduced a study to test the robustness of a
pre-trained Italian BERT against non-standard forms emerging in authentic texts. In
particular, we proposed an extensive analysis on the behaviour of BERT when dealing
with the learner errors derived from the CIftA corpus. For this purpose, we relied
on several interpretation techniques, ranging from the definition of probing tasks for
inferring the linguistic competence of the model to the analysis of word- and sentence-
level representations and attention heads. The results showed that the model is more
sensitive to orthographic errors and especially to the erroneous use of the monosyllabic
word po’ and of the apostrophe. On the other hand, grammatical and lexical errors seem
to have a smaller impact on BERT representations and attention heads. Interestingly,
we observed that, regardless of the methodology devised, the presence of a learner
error starts to play a important role mainly from the intermediate layers of the model.
Probing the linguistic knowledge of BERT relying on 15 features derived from the raw
structure and the distribution of POS tags in a sentence, we noticed that, once again,
orthographic errors are generally those for which the impact of error is most pronounced
when solving the probing tasks, especially for what concerns properties related to the
distribution of coordinating conjunctions, verbs and adverbs. Nevertheless, as the output
layer is approached, the impact of learner errors on probing performances becomes less
pronounced, thus suggesting that the model is getting progressively more robust to cope
with non-standard linguistic forms regardless of the error typology taken into account.

11.1 Future Work

There are several improvements and advancements that can be introduced to extend this
research and that we leave as future work.

Since the approach proposed in Part II could lead the way to further comparative
studies, it would be interesting, along the lines of studies such as [Chi et al., 2020], to
deepen the analysis of the linguistic knowledge encoded in multilingual models and
in Transformer models pre-trained on different languages. Furthermore, it could be
worth exploring whether and how the linguistic phenomena that most characterise the
evolution of different L1 and L2 learners’ writing skills are reflected in the implicit
abilities of these models, especially during a pre-training phase.

One of the fundamental aspects regarding the interpretability of NLMs that we
have left out concerns the way in which the linguistic knowledge is implicitly learned
during the training process. For this reason, in future work we also plan to study
how this knowledge arise during the pre-training phase and how it changes when
dealing with different (and more linguistically motivated) training objectives. A possible
outcome of this study would be the investigation of new strategies to maximize the
linguistic competence of a NLM. In fact, despite it has been demonstrated that the
introduction of linguistic information during pre-training enhances the performance of
these models [Zhou et al., 2020, Bai et al., 2021], this improvement has not yet been
investigated in the light of shifts of linguistic competence during the training process.
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Chapter 11. Conclusions

The experiments devised in the last part of the thesis can be a starting point for further
studies on the impact of noisy data on NLMs linguistic competence and downstream
performances. In fact, as it was shown by previous studies (e.g. [Sun et al., 2020a]
and [Kumar et al., 2020]), noisy input data adversely affect BERT’s performance in
real-word scenarios, such as sentiment analysis, question answering and sentiment
similarity. Although our study has been conducted on a learner corpus, some of the most
representative classes of errors and non-standard forms that it contains are persistent at
higher level of education and widely spread on informal writing, such as social media
texts. In light of this, we hope that our findings could support researchers working on
improving the robustness of NLMs in multiple real-word applications by also providing
reliable explanations of the model’s behaviour at prediction time. For instance, they could
be used to evaluate which is the best model for a specific downstream task or to define
new strategies (e.g. selecting input data appropriately during the pre-training phase) to
develop more robust systems by strengthening their implicit linguistic competence.
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