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Introduction



Generate a brief abstract (max 100 words) for a talk about Large Language Models for
DCP23, an inter-disciplinary workshop focused on non-linear dynamics, statistical
mechanics and complexity in multiple areas (e.g. mathematics, philosophy, biology,
physiology, economy and social sciences).

Title: Unleashing Large Language Models for Interdisciplinary Exploration of Non-linear O &

Dynamics and Complexity

Abstract:

This talk highlights the potential of large language models, exemplified by OpenAl's GPT-3,
in the context of the DCP23 workshop. Focusing on non-linear dynamics, statistical
mechanics, and complexity in diverse domains, such as mathematics, philosophy, biology,
physiology, economy, and social sciences, we delve into the transformative capabilities of
these models. Through their architecture, training processes, and generative abilities, large
language models offer novel insights and applications, fostering interdisciplinary
collaborations and shedding light on complex phenomena. This talk aims to inspire
participants to leverage large language models as powerful tools for exploring the intricate

dynamics and complexity that permeate their respective fields.
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Neural Language Model (NLM)

e Neural Language Model > Neural Network trained to approximate the language
modeling function

e Language Modeling - probability of a sentences=[w , w,, ..., w ] as:

N

P(s) = | [ P(wilwi, wo, ..., w;—1)
i—1

e Bengioetal. (2003) proposed a model to learn this function relying on the
architecture of a neural network > Neural Probabilistic Language Model
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Transformer Models

Nowadays, the Transformer is the most commonly used
architecture for the development of NLMs

The Transformer (Vaswani et al., 2017) exploits the
attention mechanism to create contextual
representations of words and learn the relations among
them
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Parameters are all you need (?)
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Large Language Models (LLMs)
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Interpreting Neural
Language Models



Interpretability in NLP

“In the context of NLPF, this question needs to be understood in light of earlier NLP
work. [...] In some of these systems, features are more easily understood by
humans. [...] In contrast, it is more difficult to understand what happens in an
end-to-end neural network model that takes input (say, word embeddings) and
generates an output.”

Belinkov and Glass, Analysis Methods in Neural Language Processing: A Survey (2019). In
Transactions of ACL, Volume 7, pages 49-72.
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Interpretability in NLP

“In the context of NLPF, this question needs to be understood in light of earlier NLP
work. [...] In some of these systems, features are more easily understood by
humans. [...] In contrast, it is more difficult to understand what happens in an
end-to-end neural network model that takes input (say, word embeddings) and
generates an output.”

Belinkov and Glass, Analysis Methods in Neural Language Processing: A Survey (2019). In
Transactions of ACL, Volume 7, pages 49-72.

Research questions:

e What happens in an end-to-end neural network model when trained on a language modeling task?

e Whatkind of linguistic knowledge (i.e. features) is encoded within their representations?

e |sthere arelationship between the linguistic knowledge implicitly encoded and the ability to solve a
specific task?
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Interpretability in NLP

e The analysis of the inner workings of NLMs has become one of the most addressed line of
research in NLP

e Several methods have been implemented to obtain meaningful explanations and to understand
how these models are able to capture syntax- and semantic- sensitive phenomena



Interpretability in NLP

e The analysis of the inner workings of NLMs has become one of the most addressed line of
research in NLP

e Several methods have been implemented to obtain meaningful explanations and to understand
how these models are able to capture syntax- and semantic- sensitive phenomena

e Several approaches:
o  Behavioural tests (e.g. Goldberg, 2019)
o  Probing tasks (e.g. Hewitt and Manning, 2019; Pimentel et al., 2020);
o  Analysis of attention mechanisms (e.g. Clark et al., 2019);
o  Explainability via Integrated Gradients (e.g. Ramnath, 2020);



Assessing BERT's Syntactic Abilities (Goldberg, 2019)

e Goldberg (2019) proposes a methodology for testing the implicit linguistic
competence of BERT

e Specifically, two linguistic phenomena are considered:
o  Subject-Verb Agreement;
o  Reflexive Anaphora.

e Approach: masking target words and asking the model to “fill in the gap” with the
words with high probability scores



Assessing BERT's Syntactic Abilities (Goldberg, 2019)
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Assessing BERT's Syntactic Abilities (Goldberg, 2019)
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Assessing BERT's Syntactic Abilities (Goldberg, 2019)

BERT BERT LSTM Humans # Pairs
Base Large (M&L) (M&L) (# M&L Pairs)

SUBJECT-VERB AGREEMENT:

Simple 1.00 1.00 0.94 0.96 120 (140)
In a sentential complement 0.83 0.86 0.99 0.93 1440 (1680)
Short VP coordination 0.89 0.86 0.90 0.82 720 (840)
Long VP coordination 0.98 0.97 0.61 0.82 400 (400)
Across a prepositional phrase 0.85 0.85 0.57 0.85 19440 (22400)

Across a subject relative clause 0.84 0.85 0.56 0.88 9600 (11200)
Across an object relative clause 0.89 0.85 0.50 0.85 19680 (22400)
Across an object relative (no that)  0.86 0.81 0.52 0.82 19680 (22400)

In an object relative clause 0.95 0.99 0.84 0.78 15960 (22400)
In an object relative (no that) 0.79 0.82 0.71 0.79 15960 (22400)
REFLEXIVE ANAPHORA:
Simple 0.94 0.92 0.83 0.96 280 (280)
In a sentential complement 0.89 0.86 0.86 0.91 3360 (3360)
Across a relative clause 0.80 0.76 0.55 0.87 22400 (22400)
Table 3: Results on the Marvinand Linzen (2018) stimuli. M&L results numbers are taken from

Marvin and Linzen (2018). The BERT and M&L numbers are nor directly comparable, as the experimental setup
differs in many ways.



Probing Task Approach

....................................................

predict a linguistic ——
) weights ar:
property of the input updated

! train the
-

the classifier’s

------------------

Encoder s,
Layer no further :
: fine-tuning

N x . :

.......................

the encoder’s

C A— : - weights are fixed
I Toks | l Tokz | e | Tokn |

L input text

7

Source: https://people.cs.umass.edu/~mivyer/cs685 f20/slides/19-probes.pdf



https://people.cs.umass.edu/~miyyer/cs685_f20/slides/19-probes.pdf

Profiling Neural Language Models

e The “linguistic profiling” methodology (van Halteren, 2004) assumes that wide
counts of linguistic features are particularly helpful in the resolution of several NLP

tasks, e.g.:

o  Text Profiling (e.g. text readability, textual genres)
o  Author Profiling (e.g. author’s age and native language)



Profiling Neural Language Models

e The “linguistic profiling” methodology (van Halteren, 2004) assumes that wide
counts of linguistic features are particularly helpful in the resolution of several NLP
tasks, e.g.:

o  Text Profiling (e.g. text readability, textual genres)
o  Author Profiling (e.g. author’s age and native language)

Research Question:

Could the informative power of these features also be helpful to understand the
behaviour of state-of-the-art NLMs?
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Profiling-UD: a tool for Linguistic Profiling of Texts

e ProfilingUD (Brunato et al., 2020) is a
web-based application that performs
linguistic profiling of a text, or a large
collection of texts, for multiple languages

e Itallows the extraction of more than 130
features, spanning across different levels of
linguistic description

e Link: http://linguistic-profiling.italianlp.it/

Linguistic Feature

Raw Text Properties
Sentence Length
Word Length

Vocabulary Richness
Type/Token Ratio for words and lemmas

Morphosyntactic information
Distibution of UD and language—specific POS
Lexical density

Inflectional morphology
Inflectional morphology of lexical verbs and auxiliaries

Verbal Predicate Structure
Distribution of verbal heads and verbal roots
Verb arity and distribution of verbs by arity

Global and Local Parsed Tree Structures

Depth of the whole syntactic tree

Average length of dependency links and of the longest link
Average length of prepositional chains and distribution by depth
Clause length

Relative order of elements
Order of subject and object

Syntactic Relations
Distribution of dependency relations

Use of Subordination

Distribution of subordinate and principal clauses

Average length of subordination chains and distribution by depth
Relative order of subordinate clauses
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Linguistic Profiling of a Neural Language Model (Miaschi et al., 2020)

e Weinvestigated the linguistic knowledge implicitly encoded by BERT

Research questions:

1. What kind of linguistic properties are encoded in a pre-trained version of BERT?

2. How this knowledge is modified after a fine-tuning (i.e. training of the model on a specific task) process

3. Whether this implicit knowledge affects the ability of the model to solve a specific downstream task



Linguistic Profiling of a Neural Language Model (Miaschi et al., 2020)
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Analysis of Attention Mechanisms
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Analysis of Attention Mechanisms
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Vig and Belinkov (2019)
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Conclusion and Future Directions

NLMs have reached astonishing performance in almost all NLP tasks
e However, thisimprovement comes at the cost of interpretability
Several methods have been implemented to understand the inner mechanisms

and decision-making processes of these models
o anditisan ever-evolving and exciting area of research (e.g. Li et al., 2022, Bensemann et al., 2022)



Conclusion and Future Directions

NLMs have reached astonishing performance in almost all NLP tasks
e However, this improvement comes at the cost of interpretability
Several methods have been implemented to understand the inner mechanisms

and decision-making processes of these models
o anditisan ever-evolving and exciting area of research (e.g. Li et al., 2022, Bensemann et al., 2022)

Future Directions:

e Study how the linguistic knowledge arise during the pre-training phase of a NLM and how it changes when
dealing with different training objectives

e Improve the robustness of NLMs by e.g. selecting input data appropriately during the pre-training phase
and thus strengthening their implicit linguistic competence

e ...Prompting for linguistic competence? (Liu et al., 2021)
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