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The rise of Neural 
Language Models



Introduction

● The field of NLP has seen an unprecedented progress in the last years
● Much of this progress is due to the replacement of traditional systems with newer 

and more powerful Deep Learning (DL) models
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Neural Language Models
● Neural Network (NN) model trained to approximate the language modeling function

● A probabilistic language model (LM) defines the probability of a sentence s = [w1, w2, …, 
wn] as:

● Bengio et al. (2003) proposed a model that assigns a distributed vector for each word and 
then uses a NN architecture to predict the next word → Neural Probabilistic Language 
Model
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Transformer Models
● Nowadays, the Transformer architecture has become 

the preferred solution for the development of 
state-of-the-art NLMs

● Transformers (Vaswani et al., 2017) use only attention 
and fully connected layers to create highly scalable 
networks capturing distant patterns

● Attention is the method that allows the model to 
"attend" to different positions of the input sequence to 
compute a representation of that sequence
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BERT (Devlin et al., 2019)
● Encoder model (12/24 layers)

● Trained to approximate the Masked 
Language Modeling (MLM) function

● The model can be fine-tuned in order to 
solve several NLP tasks:

○ Sentiment analysis;
○ Question answering;
○ Textual entailment;
○ etc.
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Parameters Are All You Need



Interpreting Neural 
Language Models



The Case for Interpretability

● The development of powerful state-of-the-art NLMs comes at the cost of 
interpretability, since complex NN models offer little transparency about their 
inner workings and their abilities

Objectives:

● Understand the nature of AI systems → be faithful to what influences the AI 
decisional process

● Empower AI system users → derive actionable useful insights from AI choices
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Interpretability in NLP

Research questions:

● What happens in an end-to-end neural network model when trained on a language modeling 
task?

● What kind of linguistic knowledge is encoded within their representations?
● Is there a relationship between the linguistic knowledge implicitly encoded and the ability to solve 

a specific task?

“In the context of NLP, this question needs to be understood in light of earlier NLP 
work. [...] In some of these systems, features are more easily understood by 
humans. [...] In contrast, it is more difficult to understand what happens in an 
end-to-end neural network model that takes input (say, word embeddings) and 
generates an output.”

Belinkov and Glass, Analysis Methods in Neural Language Processing: A Survey (2019). In 
Transactions of ACL, Volume 7, pages 49-72.                                                                                                                     
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Interpretability in NLP
● The analysis of the inner workings of NLMs has become one of the most addressed line of 

research in NLP

● Several methods have been implemented to obtain meaningful explanations and to understand 
how these models are able to capture syntax- and semantic- sensitive phenomena

● Several approaches:
○ Probing tasks (e.g.);
○ Analysis of attention mechanisms (e.g.);
○ Definition of diagnostic tests (e.g.);
○ etc.
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Assessing BERT’s Syntactic Abilities (Goldberg, 2019)

● Goldberg (2019) proposes a methodology for testing the implicit linguistic 
competence of BERT

● Specifically, two linguistic phenomena are considered:
○ Subject-Verb Agreement;
○ Reflexive Anaphora.

● Approach: masking target words and asking the model to “fill in the gap” with the 
words with high probability scores



Assessing BERT’s Syntactic Abilities (Goldberg, 2019)
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the game that the guard hates [MASK] bad

● p(is) = ?
● p(are) = ?
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Probing Task Approach
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Probing Task Approach

Slide from: https://people.cs.umass.edu/~miyyer/cs685_f20/slides/19-probes.pdf

Findings:
● BERT encodes linguistic information in a hierarchical 

manner (Tenney et al., 2019)

● BERT encodes information about the structure of a syntax 
tree (Hewitt and Manning, 2019)

● BERT contains relational knowledge competitive with 
symbolic knowledge bases (Petroni et al., 2019)

https://people.cs.umass.edu/~miyyer/cs685_f20/slides/19-probes.pdf
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Profiling Neural 
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Profiling Neural Language Models

● The “linguistic profiling” methodology (van Halteren, 2004) assumes that wide 
counts of linguistic features are particularly helpful in the resolution of several NLP 
tasks, e.g.:

○ Text Profiling (e.g. text readability, textual genres)
○ Author Profiling (e.g. authorʼs age and native language)

Research Question: 

Could the informative power of these features also be helpful to understand the 
behaviour of state-of-the-art NLMs?
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Profiling-UD: a tool for Linguistic Profiling of Texts
● ProfilingUD (Brunato et al., 2020) is a 

web–based application that performs 
linguistic profiling of a text, or a large 
collection of texts, for multiple languages

● It allows the extraction of more than 130 
features, spanning across different levels of 
linguistic description 

● Link: http://linguistic-profiling.italianlp.it/
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Profiling Neural Language Models
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Linguistic Profiling of a Neural Language Model (Miaschi et al., 2020)

● We investigated the linguistic knowledge implicitly encoded by BERT

Research questions:

1. What kind of linguistic properties are encoded in a pre-trained version of BERT?

2. How this knowledge is modified after a fine-tuning process 

3. Whether this implicit knowledge affects the ability of the model to solve a specific downstream 
task



Linguistic Profiling of a Neural Language Model (Miaschi et al., 2020)
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● Fine-tuning of BERT on the Native Language Identification (NLI)

“No breakfast, coz you still have enough alcohol in your stomach.”
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● Fine-tuning of BERT on the Native Language Identification (NLI)

“No breakfast, coz you still have enough alcohol in your stomach.”

● Probing tasks on the fine-tuned model
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● We have split each NLI dataset in sentences correctly and incorrectly classified by 
BERT

● We computed the MSE for each subset and each probing feature
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Probing Tasks Under Pressure (Miaschi et al., 2021)
Open Issue:

● Are probing classification tasks really suited for performing such investigation or 
they simply hint for surface patterns in the data?

Control Tasks:

● Hewitt and Liang (2019) introduced control tasks, i.e. a set of tasks that associate 
word types with random outputs that can be solved by simply learning regularities

Our Contribution:

● We put increasingly under pressure the effectiveness of a suite of probing tasks to 
test the linguistic knowledge implicitly encoded by BERT on Italian sentences.
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Probing Tasks Under Pressure (Miaschi et al., 2021)

Hypothesis:

If the predictions using control 
datasets progressively diverge 
from the predictions on the gold 
dataset, this possibly suggest 
that probing tasks are effective to 
test the linguistic knowledge 
embedded in BERT 
representations.
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Conclusion and Future Directions

● NLMs have reached astonishing performance in almost all NLP tasks
● However, this improvement comes at the cost of interpretability
● Several methods have been implemented to understand the inner mechanisms 

and decision-making processes of these models
○ and it is an ever-evolving and exciting area of research (e.g. Li et al., 2022, Bensemann et al., 2022)

Future Directions:

● Study how the linguistic knowledge arise during the pre-training phase of a NLM and how it changes when 
dealing with different training objectives

● Improve the robustness of NLMs by e.g. selecting input data appropriately during the pre-training phase 
and thus strengthening their implicit linguistic competence
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